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Abstract

The use of Digital Twins is key in Industry 4.0, in the Industrial Internet of Things, engineering,
and manufacturing business space. For this reason, they are becoming of particular interest
for different fields in Artificial Intelligence (AI) and Computer Science (CS). In this thesis
we focus on the orchestration of Digital Twins. We manage this orchestration using MDP,
given a specification of the behavior of the target service, to build a controller, known as
an orchestrator, that uses existing stochastic services to satisfy the requirements of the target
service. The solution to this MDP induces an orchestrator that coincides with the exact solution
if a composition exists. Otherwise it provides an approximate solution that maximizes the
expected discounted sum of values of user requests that can be serviced. We formalize stochastic
service composition and we present a proof-of-concept implementation, and we discuss a case
study in an Industry 4.0 scenario.
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Chapter 1

Introduction

This chapter presents the outline of this thesis and summarizes motivations, objectives, and
results. The chapter is structured as follows:

• In Section 1.1: we provide a background in which the thesis developed, illustrated the
main concept of Digital Twins and Service Composition;

• In Section 1.2: we describe all the motivation of the development of this thesis;
• In Section 1.3: we define all the objectives of the thesis;
• In Section 1.4: we clarify all the result achieved by the objectives set of the thesis;
• In Section 1.5: we list and explain the structure of the rest of the thesis.

1.1 Background
This chapter shows the background, i.e. the main concepts on which the development of the
thesis is based.

1.1.1 Digital Twins
The continuous evolution of technologies in the fields of communication, networking, storage and
computing, applied to the more traditional world of industrial automation, in order to increase
productivity and quality, to ease workers’ lives, and to define new business opportunities, has
created the so-called smart manufacturing or Industry 4.0.
Digital Twins (DTs) are up-to-date digital descriptions of physical objects and their operating
status. Modern information systems and industrial machines may natively come out with
their digital twin; in other cases especially when the approach is applied to already established
factories and production processes, digital twins are obtained by wrapping actors that are
already in place.
DTs are commonly known as a key enabler for the digital transformation in manufacturing.
Even though there is no common understanding concerning this term, different digital twin
definitions agree on features such as:

• connectivity: i.e., the ability to communicate with other entities and DTs,
• autonomy: i.e., the possibility for the DT to live independently from other entities,
• homogeneity: i.e., the capability, strictly connected to the autonomy, that allows to use

the same DT regardless of the specific production environment,
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• easiness of customization: i.e., the possibility to modify the behavior of a physical
entity by using the functionalities exposed by its DT,

• traceability: i.e., the fact that a DT leaves traces of the activity of the physical entity.
The availability of DTs could therefore have a huge impact on the design of manufacturing
processes in digital factories, by allowing automatic recovery and optimization, and even au-
tomatic orchestration of the intermediate steps for achieving a production goal, thus achieving
manufacturing resilience.

1.1.2 Service Composition
During the last years, many approaches have been proposed in order to address the issue of
automated service composition. The composition of services, amounts to realize a (virtual)
target service, by resorting only to (actual) available services. First, for sake of semplicity
we can consider Roman Model, in which services are abstracted as transition systems and the
objective is to obtain a composite service that preserves a desired interaction, expressed as a
(virtual) target service.
Then, we discuss and elaborate upon a probabilistic model for the service composition problem,
we find an optimal solution by solving an appropriate probabilistic planning problem (a Markov
decision process – MDP) derived from the services and requirement specifications. Specifically,
it is natural to make the requirement probabilistic, associating a probability with each action
choice in each state (Brafman et al., 2017).
This probability captures how likely the user is to request the action in that state. Such in-
formation can be, initially, supplied by the designer, but can also be learned in the course of
service operation in order to adapt the composition to user behavior. Next, a reward is asso-
ciated with the requirement behavior. This reward can be defined in different ways depending
on the designer’s objectives.

1.2 Thesis Motivations
Recently, the concept of Digital Twin (DT), meant as a virtual replica of a physical asset,
emerged. Due to the growth of the Internet-of-Things (IoT), which is the main enabling tech-
nology for DTs, an increasing number of software solutions that implement DTs appeared. The
Digital Twin is an ideal tool to accomplish the purpose of Industry 4.0, since it enables mas-
sive exchange of data that can be interpreted by analytical tools, in order to improve decision
making.
In fact, as showed in recent literature, Digital Twins can be potentially employed in every phase
of manufacturing: from the very beginning, in the design phase, till the product is operative,
in the maintenance phase. Nevertheless, the potential of DTs as a tool to fully realize the
paradigm of smart manufacturing has been only superficially explored. In the the traditional
manufacturing process, the production plan is generated based on the new and historical orders.
The preparation for production is carried out, such as equipment maintenance and material
collection, and formal production is executed according to the plan. However, this approach is
poorly maintainable and not resilient to changes of the execution environment.
The approach proposed in (Brafman et al., 2017), despite being an improvement from the classi-
cal Roman approach as it allows to find “good enough" solutions, does not have the expressivity
to represent nondeterministic behaviours of the available services, and it does not take into
account the rewards (or costs) of using a certain service. For example, in an Industry 4.0 sce-
nario, different machines may have different performances or utilization costs, and reasoning
about machines capabilities may be crucial to orchestrate them effectively. Moreover, there
might be uncontrollable events, e.g. usury or breaking of the machines, that cannot be capture
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by deterministic models. In other words, we need a way to represent stochasticity of services’
state transitions and rewards associated to them, such that the orchestrator can opt for the
best machine to take a job in a specific state of the target task to be accomplished.

1.3 Thesis Objectives
This thesis sets specific objectives about the orchestration of Digital Twins. Our first objective
is to extend the theoretical work of service composition with stochastic settings introduced in
(Brafman et al., 2017), proposing a model that permits not only to the target but also to the
services to behave stochastically.
Then, what we want to construct is a library that captures the stochasticity of the available
services and target, composes system service, composes MDP and calculates the optimal policy.
Another important objective, is to define the previous model with Digital Twins technologies
capturing available services and target as Thing in Bosch Iot Things platform. What we want
to propose is a software architecture for Smart Factories that, is able to orchestrate the devices:
where given the target action (that represents user’s choice) and available services (that rep-
resents machines) the orchestrator is able to choice which service can execute the action. We
explain in detail how we managed the communication between Orchestrator, Bosch Iot Things
and devices.
To validate the proposed architecture, we think about a hypothetical manufacturing process.
Finally, we want to construct a proof-of-concept implementation of the mentioned frameworks
about an Industry 4.0 use case.

1.4 Thesis Results
The thesis significantly contributes to the research areas of Artificial Intelligence and Computer
Science. All the objectives stated above have been achieved. The first contribution of the thesis
is extendend the work of (Brafman et al., 2017) about service composition, that assume that
the target services behave stochastically. Extending this model allow us to capture stochastic
services, where the service transitions are probabilistic too. The relevant changes are the defi-
nitions of transition functions associated to the available services. The MDP construction, too,
need to be modified to take into account the stochastic transitions of both the system state and
target state. We give motivations about this approach and analyzed the implications and the
main advantages.
Then, we create a Python library ad-hoc, stochastic-service-composition where we imple-
ment all the components defined previously, this represent a crucial step for the calculation of
MDP. In particular we define: the class of services, how to build its stochastically transitions
and how build the system service; the class of target and how to build its stochastically transi-
tions; the function of the composition MDP and the optimal policy calculation. This library is
available at this github link https://github.com/luusi/stochastic-service-composition
in the subfolder “stochastic_service_composition”. Moreover, we implement also Jupyter
notebooks which contain both code and automata of the available services, the system ser-
vice, the target and the composition MDP. We provide this notebooks because they are
very human-readable documents and also containing an analysis description and figures for
better understand our case of study. This library is available at this github link https:
//github.com/luusi/stochastic-service-composition in the subfolder path “docs/note-
books”
We devise a way to represent the digital representation of available services and target, we
doing this using Digital Twin created through Bosch IoT platform. Thanks to this repre-
sentation we can simulate a sort of “real” simulation of available services and target be-

https://github.com/luusi/stochastic-service-composition
https://github.com/luusi/stochastic-service-composition
https://github.com/luusi/stochastic-service-composition
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haviour that can happen in an Industry 4.0 scenario. For this purpose we define an or-
chestration between the user choice and the using of machines that can perform the action
choose by the user. In this way when the target asks for an action, the orchestrator del-
egates to the right service this action. This part is available at this github link https:
//github.com/luusi/stochastic-service-composition in the subfolder “digital_twins”.
As proof of all that has been said we provide a simulation of process in an Industry 4.0 scenario
that produces the ceramics. The target is linear and performs one action at time according to
the optimal policy, the orchestrator delegate the action asked from target to the right machine
that perfoms it and update the state in which it is, the orchestrator says to the target that all
is going well and the target ask for to the next action.

1.5 Structure of the rest of the thesis
The rest of the thesis is structured as follows:

• In Chapter 2: we introduce the concept of Industry 4.0. We start illustrating the
evolution from Industry 1.0 to Industry 4.0 and how over the years the industry has
progressed; the technologies used for it as IoT, Cloud Computing, CPS and industrial
integration, and finally we list and describe the smart manufacturing systems for Industry
4.0;

• In Chapter 3: we describe the notions of Digital Twins, providing the definitions that
during the years have emerged. Then, we define enabling technologies as security, algo-
rithms, software and platform etc., and we list all manufacturing processes that involves
Digital Twins. Moreover, we give a detailed description of the platform used to create
Digital Twins, Bosch IoT Things, and we illustrate all the benefits that the platform offers,
the most important concepts and a short tutorial on its use;

• In Chapter 4: we illustrate the structure of the framework: the intermediate state
between the concepts described till now and the software that we will use. We start with
a small overview of the Digital Twins representation in Industry 4.0, we proceed with the
architecture for a smart manufacturing process based on DTs and we provide an example
of what described so far. Finally, we define the description of our use case, of how are
managed the available services, the target and the orchestrator and we briefly underline
the technological aspects of our use case;

• In Chapter 5: we present preliminary notions to understand technical content of the
thesis. In particular, we describe the mathematical definition of MDP and all the main
concepts; then, we report the techniques for finding an optimal policy, introducing policy
iteration and value iteration, showing their algorithm in pseudocode. Moreover, we explain
the problem of service composition starting from the simplest model, the Roman one,
ending with stochastic service composition where the target is stochastic, introduced in
(Brafman et al., 2017);

• In Chapter 6: we describe the first contribution of the thesis. We introduce the the-
oretical concepts of service composition with stochastic services, that is an extension of
stochastic service composition. We illustrate all the mathematical concepts and defini-
tions of this extension, the computation of optimal orchestrator and the relative proofs.
Finally, we describe an example of how the definitions illustrated above can be applied;

• In Chapter 7: we present one of the practical contributions of the thesis, giving a small
description about the library and tools used, and providing the GitHub link to the project
developed. We continue by describing in detail the implementations of all the available
services and the target, showing code and automata of both. We also define the construc-
tion of the system service algorithm and also of the composition MDP providing code,

https://github.com/luusi/stochastic-service-composition
https://github.com/luusi/stochastic-service-composition
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automata and algorithm. Finally we show the optimal calculation with some interesting
remarks;

• In Chapter 8: we describe the a technological solution of the model proposed in Chapter
6 based on DT in an Industry 4.0 scenario. First we present the architecture of the
project, listing the main components between Bosch IoT Things and the system and
how are managed the the connection between them, then we explain how the available
services and the target are defined in the Bosch IoT Things platform. Moreover, we
illustrate the workflow of our system and in particular how target, orchestrator and services
communicate between them;

• In Chapter 9: we describe the proof-of-concept implementation of our thesis. In partic-
ular, we illustrate and explain how DT are implemented in Bosch IoT Things platform.
Then, we describe the core structure of the project, presenting and explaining in detail the
orchestrator’s code and devices code, as well as the communication mechanisms. Finally,
we describe the execution of the software and how to launch the different components;

• Chapter 10: summarizes the conclusions of the thesis, providing an overview, the most
important remarks and the future works that can be done with this framework.
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Chapter 2

Industry 4.0

In this chapter we explain the fundamental concepts of Industry 4.0: the ongoing automation
of traditional manufacturing and industrial practices, using modern smart technology. The
chapter is structured as follows:

• In Section 2.1: we talk about the evolution during the years of the industry from 1.0 to
4.0, highlighting progress;

• In Section 2.2: we propose the related technologies (starting from IoT and ending in
Industrial Integration), describing them in detail and providing different examples; (Xu
et al., 2018);

• In Section 2.3: we list the framework of Industry 4.0 in smart manufacturing systems
(Zheng et al., 2018).

2.1 The evolution from Industry 1.0 to Industry 4.0
Industry 4.0 is a term coined to represent the fourth industrial revolution based on the latest
technological advances. Over the years there has been a progression of industry as shown in
Figure 2.1.

• The First Industrial Revolution began at the end of the eighteenth century and early
nineteenth century, which was represented by the introduction of mechanical manufactur-
ing systems utilising water and steam power.

• The Second Industrial Revolution started in the late nineteenth century, symbolised
by mass production through the use of electrical energy.

• The Third Industrial Revolution began in the middle of twentieth century and in-
troduced automation and microelectronic technology into manufacturing. In the Third
Industrial Revolution, the advancement of Information and Communication Technologies
(ICT) was at the core of every major shift of the manufacturing paradigm.

Industry 4.0 is mainly represented by: Cyber-Physical System (CPS), Internet of Things (IoT)
and Cloud Computing (Jasperneite, 2012; Hermann et al., 2016) however, it will also rely on
smart devices in addition to IoT, CPS, Cloud Computing and Business Process Management
(BPM).
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Figure 2.1. The evolution from Industry 1.0 to Industry 4.0

In a Industry 4.0 scenario, the manufacturing process is the main activity and, among several
equipments, autonomous robots are extensively used toward manufacturing performance and
revenue improvements. Combined with currently available techniques of data analysis and
cognition, this creates new possibilities of interoperability, modularity, distributed processing,
and integration in real time with other systems for industrial processes.

2.2 Technologies for Industry 4.0
Various technologies or techniques can be used for implementing Industry 4.0. These technolo-
gies include: CPS, IoT, cloud computing, blockchain, industrial information integration and
other related technologies.

2.2.1 Internet of Things and related technologies
Internet of Things (IoT) is expected to offer promising transformational solutions for the oper-
ation and role of many existing industrial systems within the digital enterprises of tomorrow’s
complex industrial ecosystems. When the term, IoT first emerged, it was referred to uniquely
identifiable interoperable connected objects using radio-frequency identification (RFID) tech-
nology (Ashton et al., 2009; Da Xu et al., 2014). Connecting RFID reader to the Internet, the
readers can automatically and uniquely identify and track the objects attached with tags in
real-time. Later on, the IoT technology was used with other technologies, such as sensors, ac-
tuators, the Global Positioning System (GPS) and mobile devices that are operated via Wi-Fi,
Bluetooth ecc.
A recent definition of IoT is: a dynamic global network infrastructure with self-configuring
capabilities based on standard and interoperable communication protocols where physical and
virtual “Things” have identities, physical attributes, and virtual personalities and use intelligent
interfaces, and are seamlessly integrated into the information network.
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Figure 2.2. IoT related technologies made a significant impact on new ICT and paved the way for the
realisation of Industry 4.0

The foundation of IoT can be considered as a global network infrastructure composed of nu-
merous connected devices that rely on sensory, communication, networking and information
processing technologies (Tan and Wang, 2010; Da Xu et al., 2014; Mao et al., 2016). Figure
2.2 presents advances in RFID, WSN and IoT. Today RFID, WSN and IoT are used to form a
solid technological foundation for supporting CPS as well as the emerging new ICT.
Industry 4.0 combines intelligent sensors, artificial intelligence, and data analytics to optimise
manufacturing in real time. With the advances in sensor network technologies, wireless commu-
nication, and other emerging technologies, more and more networked things, or smart objects,
are being involved in IoT. Meanwhile, these IoT-related technologies have also made a significant
impact on new ICT and CPS thus paved the way for the realisation of Industry 4.0.

2.2.2 Cloud computing
Cloud computing is a computing technology which offers high performance and low cost (Zheng
et al., 2014; Mitra et al., 2017). Virtualization technology provides cloud computing with re-
source sharing, dynamic allocation, flexible extension, and numerous other advantages. Cloud-
based manufacturing is a rising technology which can contribute significantly to the realisation
of Industry 4.0 that enables modularization and service-orientation in the context of manufac-
turing, in which systems orchestration and sharing of services and components are important
considerations (Wang et al., 2013; Thames and Schaefer, 2016; Moghaddam and Nof, 2018).
Cloud manufacturing, similar to cloud computing, uses a network of resources in a highly
distributed way. Manufacturing-as-a-Service (MaaS) has been gaining attraction in the manu-
facturing industry. Cloud design allows anyone to upload and share designs with others. Local
Motors, an American motor vehicle-manufacturing company, focused on low-volume production
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of open-source motor vehicle designs using multiple micro-factories. Their designs are co-created
by designers, engineers, fabricators and enthusiasts in its virtual community. This is an example
of using a cloud design (Branger and Pang, 2015).
A modern enterprise’s operation involves numerous decision-making activities, requiring a large
amount of information and intensive computation. At one point, manufacturing enterprises
required multiple computing resources such as servers for databases and decision-making units.
This caused inefficient data exchange and sharing, low productivity and less optimal utilisation
of manufacturing resources. Cloud computing provides an effective solution to such problems.

2.2.3 Cyber-physical systems
Cyber-physical systems (CPS) is the core foundation of Industry 4.0 (Varghese and Tandur,
2014; De Silva and De Silva, 2016; Kim, 2017). CPS are engineered systems that are built
from, and depend upon the seamless integration of computational algorithms and physical
components. Advances in CPS will enable capability, adaptability, scalability, resiliency, safety,
security and usability that will far exceed the simple embedded systems of today as Figure 2.3
shows. According to the NSF, we have seen a convergence of CPS technologies and research
thrusts that underpin the IoT and Smart & Connected Communities (SCC).
These domains offer new and exciting challenges for foundational research and provide oppor-
tunities for maturation at multiple time horizons. New smart CPS will drive innovations in
sectors such as manufacturing, energy, transportation, agriculture, automation and healthcare.
In Industry 4.0, CPS is expected to provide the basis for the creation of Industrial IoT, which
combines with advanced ICT to make Industry 4.0 possible. CPS connects virtual space with
physical reality by integrating computing, communication, and storage capabilities; further-
more, it can be real-time, efficient, reliable, and secure (Cheng et al., 2016).
CPS is considered to be an Industry 4.0 enabling technology that will merge the virtual and
the physical worlds (Saldivar et al., 2015), making the boundaries between these two worlds
disappear.

Figure 2.3. CPS

Industry 4.0 manufacturing systems will be collaborative systems involving various communi-
cating agents including physical agents, software agents, and human agents. This will result
in a fusion of both technical and business processes leading the way to a new industrial age,
resulting in the smart factory. The essence of Industry 4.0 is applying CPS to realise smart
factories (Kusiak, 2017).
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In other words, the smart factory is made possible by CPS-based production systems. CPS can
play a major role in smart factory manufacturing and production processes. This provides sig-
nificant real-time, resource, and cost advantages in comparison with classic production system.
In one application, for example, an automotive manufacturer employed cognitive technologies
to optimise the configuration of its production line to balance the workload between stations,
use labour more efficiently, and increase the rate of production while also adhering to its design
for manufacturing (DFM) practices.
The application enabled the manufacturer to reduce operating costs and capital investments by
about 10%. In another application, an automobile manufacturer used cognitive planning tools
to optimise its use of available plant capacity to bring a new model of cars into production.
The application enabled the manufacturer to reduce operating costs and capital investments
by about 10%. In yet another application, a semiconductor manufacturer was able to reduce
cycle time by 15% by reducing equipment idle wait times, thus increasing throughput and asset
utilisation.

2.2.4 Industrial integration, enterprise architecture and enterprise applica-
tion integration

In the first half of the first decade of 2000 it has become more and more clear that the emergence
of Industrial Integration grew out from a new era of ICT, which occurred at the stage of the
Third Industrial Revolution.
(Kaynak, 2007) wrote: “The area of industrial automation and control has had its share of the
changes too”. It is easy to see how dominant IT has become in industrial electronics if one
considers the changes in time spent by an engineer in designing a controlled drive system:

• Before the 1960s: 80% for designing a control system with mechanical switches.
• After the 1960s: 80% for designing power electronics converters.
• After the 1980s: 80% for designing digital hardware and software.
• Currently: 90% for software and IT.

In the current process of industrial integration, CPS represent a paradigm shift from existing
business and market models, as revolutionary new applications, services and value chains will
become available. Due to the arrival of Industry 4.0 and the profound changes to complex
industrial ecosystems (Rennung et al., 2016), there is the need to embrace new architectures
and new business processes that will help an industrial organisation with the adaptation of
existing enterprise architecture, ICT infrastructures, processes and relationships to support the
transformation. The Gartner Group describes the enterprise architecture (EA) change process
as one that is creating, improving, and communicating the key requirements, principles and
models that describe the enterprise’s future state and enable its evolution.
An enterprise architecture (EA) presents the structure of an enterprise and consists of the
main enterprise components such as a company’s goals, organisational structures, information
infrastructure and business process. Integration, consolidation and coordinated applications
have been identified as a critical issue in the Industry 4.0 environment. The boundaries of
individual factories will most likely fade away. Factories in different industrial sectors and
different geographical regions will be interconnected or integrated. Most probably, an enterprise
will have some existing legacy systems that it intends to continue to use, and meanwhile, it will
add a new set of applications to the operation. To address the integration of new and existing
applications, an ICT solution, which is referred to as Enterprise Application Integration (EAI)
(Yu and Madiraju, 2014) can be applied.
In order to integrate the new CPS-based digital capabilities with existing architectures, systems
and processes, the coordination of various systems and applications greatly depends on EA,
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EI and EAI. Weber has pointed out that one of the important issues surrounding Industry
4.0 is the fact that existing equipment is not capable of communicating with newly deployed
technology (Weber, 2016). This obstacle can be overcome by Enterprise Application Integration
(EAI) system, which is created with different methods and on different platforms, and aims at
connecting the current and new system processes, providing a flexible and convenient process
integration mechanism. The integration of enterprise applications includes the integration of
heterogeneous data sources, processes, applications, platforms and standards. By combining
software, hardware, and standards, EAI makes sharing and exchanging data and information
seamlessly possible (Da Xu, 2011), which is required by Industry 4.0.

2.3 Smart manufacturing systems for Industry 4.0
The Industry 4.0 concept in the manufacturing sector covers a wide range of applications from
product design to logistics. The role of mechatronics, a basic concept in manufacturing system
design, has been modified to suit CPS (Penas et al., 2017). Smart product design based on
customized requirements that target individualized products has been proposed (Zawadzki and
Żywicki, 2016). Predictive maintenance (Bokrantz et al., 2017) and its application in machine
health prognosis are popular topics in Industry 4.0-based CPS (Xia and Xi, 2019).
Machine Tools 4.0 as the next generation of machine tools has been introduced in machining
sites (Xu, 2017). Energy Management 4.0 has also been proposed for decision-based energy data
and has transformed energy monitoring systems into autonomous systems with self-optimized
energy use (Nienke et al., 2017). Moreover, the implication of Industry 4.0 technologies on
logistic systems has been investigated (Hofmann and Rüsch, 2017). This section only presents
design, monitoring, machining, control, and scheduling applications. Figure 2.4 presents a
framework of Industry 4.0 smart manufacturing systems.
The horizontal axis shows typical issues in Industry 4.0, including smart design, smart ma-
chining, smart monitoring, smart control, smart scheduling, and industrial applications. The
vertical axis shows issues in another dimension of Industry 4.0 ranging from sensor and actuator
deployment to data collection, data analysis, and decision making. In Industry 4.0, data gath-
ering and analysis are the main sources of the smartness of activities shown on the horizontal
axis.

Figure 2.4. Conceptual framework of Industry 4.0 smart manufacturing systems
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• Smart design
Traditional design has been upgraded and has become smart due to the rapid development
of new technologies, such as virtual reality (VR) and augmented reality (AR). Hybrid
prototyping using VR techniques has been introduced to additive manufacturing.
Design software, such as computer-aided design (CAD) and computer-aided manufactur-
ing (CAM), can now interact with smart physical prototype systems in real time via 3D
printing integrated with CPS and AR (Kolarevic, 2004). Thus, engineering changes and
physical realizations could be combined to achieve a smart design paradigm.

• Smart machining
In Industry 4.0, smart machining can be achieved with the aid of smart robots and other
types of smart objects that can sense and interact with one another in real time (Zhong
et al., 2013a).
For example, CPS-enabled smart machine tools can capture real-time data and transfer
them to a cloud-based central system so that machine tools and their twined services can
be synchronized to provide smart manufacturing solutions. In addition, self-optimization
control systems provide in-process quality control and eliminate the need for post-process
quality inspection.

• Smart monitoring
Monitoring is an important aspect in the operation, maintenance, and optimal schedul-
ing of Industry 4.0 manufacturing systems (Janak and Hadas, 2015). The widespread
deployment of various sensors has made smart monitoring possible.
For example, data on various manufacturing objects, such as temperature, electricity con-
sumption, vibrations, and speed, can be obtained in real time. Smart monitoring provides
not only a graphical visualization of these data but also alerts when abnormality occurs
in machines or tools. CPS and IoT are key technologies that enable smart monitoring in
Industry 4.0 smart manufacturing systems.

• Smart control
In Industry 4.0, high-resolution, adaptive production control (i.e., smart control) can be
achieved by developing cyber-physical production control systems. Smart control is mainly
executed to manage various smart machines or tools physically through a cloud-enabled
platform (Makarov et al., 2014).
End users can switch off a machine or robot via their smartphones. Decisions can then
be timely reflected in frontline manufacturing sites, such as robot-based assembly lines or
smart machines.

• Smart scheduling
Smart scheduling mainly utilizes advanced models and algorithms to draw information
from data captured by sensors. Data-driven techniques and advanced decision architecture
can be used to perform smart scheduling. For example, distributed smart models that
utilize a hierarchical interactive architecture can be used for reliable real-time scheduling
and execution (Marzband et al., 2015).
Production behavior and procedures can then be carried out automatically and effec-
tively because of the well-established structures and services. With the aid of data input
mechanisms, the output resolutions are fed back to the parties involved in different ways.

• Industrial applications
Industrial applications that target different industry implementations of various solutions
are the ultimate goal of Industry 4.0 and may revolutionize manufacturing systems. The
solutions provided by Industry 4.0 are sufficiently flexible to support customized configu-
ration and development according to the uniqueness and specific requirements of several
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industries, such as the food industry that includes a large number of perishable prod-
ucts. Thus, dynamic manufacturing networks are provided opportunities to manage their
supply and business modes (Papakostas et al., 2013).
With the support of configurable facilities from layers of smart design and manufacturing
and smart decision making, applications can achieve a holistic perspective by considering
practical concerns, such as production efficiency, logistics availability, time constraints,
and multiple criteria.

• Smart design and manufacturing
Research at this level encompasses smart design, smart prototyping, smart controllers,
and smart sensors. Real-time control and monitoring support the realization of smart
manufacturing (Zhong et al., 2015). Supporting technologies include IoT, STEPNC, 3D
printing, industrial robotics, and wireless communication.

• Smart decision-making
Smart decision making is at the center of Industry 4.0. The ultimate goal of deploying
widespread sensors is to achieve smart decision making through comprehensive data col-
lection. The realization of smart decision making requires real-time information sharing
and collaboration (Zhong et al., 2013b).
Big data and its analytics play an important role in smart decision-making tasks, such
as data-driven modeling and data-enabled predictive maintenance. Many technologies,
including CPS, big data analytics, cloud computing, modeling, and simulation, contribute
to the realization of smart decision making.

• Big data analytics
CPS and IoT-based manufacturing systems involve the generation of vast amounts of
data in Industry 4.0, and big data analytics is crucial for the design and operations of
manufacturing systems.
For example, by using the big data analytics approach, a holistic framework for data-
driven risk assessment for industrial manufacturing systems has been presented based on
real-time data (Niesen et al., 2016). Such a topic has been widely reported to support
production optimization and manufacturing CPS visualization.

• Industrial implementations
Industrial applications are the ultimate aim of Industry 4.0. Almost all industries includ-
ing manufacturing, agriculture, information and media, service, logistics, and transporta-
tion, can benefit from the new industrial revolution.
Many new opportunities will be available for industrial parties (Lee et al., 2015). Com-
panies may focus on their core business values or challenges, which could be upgraded or
addressed with Industry 4.0-enabled solutions.
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Chapter 3

Digital Twins

In this chapter we describe the meaning of Digital Twins, a virtual model of a process, product
or service. In particular in:

• In Section 3.1: we talk about how this concept has evolved over the years;
• In Section 3.2: we define the enabling technologies required to support Digital Twins;
• In Section 3.3: we list their integration in Industry 4.0;
• In Section 3.4: we provide a description of platforms used to create a digital twin and in

particular we focused on Bosch Iot Things, the one used in the development of the thesis.
This last section in addition to describing the platform used, collects the definitions of the
most important concepts used and a tutorial on its use.

3.1 DT literature
The concept of the Digital Twin dates back to a University of Michigan presentation to industry
in 2002 for the formation of a Product Lifecycle Management (PLM) center. The presentation
slide, as shown in Figure 3.1 and originated by Dr. Grieves, was simply called “Conceptual
Ideal for PLM”.
However, it did have all the elements of the Digital Twin: real space, virtual space, the link for
data flow from real space to virtual space, the link for information flow from virtual space to
real space and virtual sub-spaces.

Figure 3.1. Conceptual ideal for PLM
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This concept was officially expanded and named as Digital Twin in (Grieves, 2011). Today
are among the most promising technologies for smart manufacturing and Industry 4.0. Several
definitions emerged in the literature:

• “A Digital Twin is an integrated multiphysics, multiscale, probabilistic simulation of an
as-built vehicle or system that uses the best available physical models, sensor updates,
fleet history, etc., to mirror the life of its corresponding flying twin.” (Glaessgen and
Stargel, 2012)

• “A digital twin is a computerized model of a physical device or system that represents all
functional features and links with the working elements.” (Chen, 2017)

• “The digital twin is actually a living model of the physical asset or system, which contin-
ually adapts to operational changes based on the collected online data and information,
and can forecast the future of the corresponding physical counterpart.” (Liu et al., 2018)

• “A Digital Twin is a set of virtual information that fully describes a potential or actual
physical production from the micro atomic level to the macro geometrical level.” (Zheng
et al., 2018)

• “A Digital Twin is a real mapping of all components in the product life cycle using physical
data, virtual data and interaction data between them.” (Tao et al., 2018)

• “A Digital Twin is a digital replica of a living or non-living physical entity. By bridging
the physical and the virtual world, data is transmitted seamlessly allowing the virtual
entity to exist simultaneously with the physical entity.” (El Saddik, 2018)

• “A Digital Twin is a dynamic virtual representation of a physical object or system across its
lifecycle, using real-time data to enable understanding, learning and reasoning.” (Bolton
et al., 2018)

Based on the given definitions of a Digital Twin in any context, one might identify a common
understanding of Digital Twins, as digital counterparts of physical objects. Within these defini-
tions, the terms Digital Model, Digital Shadow and Digital Twin are often used synonymously.
However, the given definitions differ in the level of data integration between the physical and
digital counterpart.
Some digital representations are modelled manually and are not connected with any physical
object in existence, while others are fully integrated with real-time data exchange.
Therefore is proposed a classification of Digital Twins into three subcategories, according to
their level of data integration (Kritzinger et al., 2018):

• Digital Model
A Digital Model is a digital representation of an existing or planned physical object that
does not use any form of automated data exchange between the physical object and the
digital object, as shown in Figure 3.2. The digital representation might include a more or
less comprehensive description of the physical object.
These models might include, but are not limited to simulation models of planned factories,
mathematical models of new products, or any other models of a physical object, which do
not use any form of automatic data integration. Digital data of existing physical systems
might still be in use for the development of such models, but all data exchange is done in
a manual way.
A change in state of the physical object has no direct effect on the digital object and vice
versa.
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Figure 3.2. Data Flow in a Digital Model

• Digital Shadow
Based on the definition of a Digital Model, if there exists an automated one-way data flow
between the state of an existing physical object and a digital object, one might refer to
such a combination as Digital Shadow, as shown in Figure 3.3.
A change in state of the physical object leads to a change of state in the digital object,
but not vice versa.

Figure 3.3. Data Flow in a Digital Shadow

• Digital Twin
If the data flows between an existing physical object and a digital object are fully integrated
in both directions, one might refer to it as Digital Twin as shown in Figure 3.4. In such
a combination, the digital object might also act as controlling instance of the physical
object. There might also be other objects, physical or digital, which induce changes of
state in the digital object.
A change in state of the physical object directly leads to a change in state of the digital
object and vice versa
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Figure 3.4. Data Flow in a Digital Twin

3.2 Enabling technologies
According to the 5-dimension model, as shown in Figure 3.5 a variety of enabling technologies
are required to support different modules of DT:

• Physical Entity: full understanding for the physical world is a prerequisite for DT
• Virtual Model: represents a faithful replica of the physical entity. It can be a three-

dimension geometric model and/or a behaviour model
• Services: provided by DT
• DT Data provided by:

– Physical Model: both static and dynamic data
– Virtual Model: data resulting from simulations
– Service

• Connections: all those that act as a bridge between the physical entity, the virtual
entities, services and data

DT involves multidisciplinary knowledge, including dynamics, structural mechanics, acoustics,
thermals, electromagnetism, materials science, hydromechatronics, control theory, and more.
Combined with the knowledge, sensing, and measurement technologies, the physical entities
and processes are mapped to the virtual space to make the models more accurate and closer
to the reality. For the virtual model, various modeling technologies are essential. Visualization
technologies are of the essence for real-time monitoring of physical assets and processes. The
accuracy of virtual models directly affects the effectiveness of DT.
Therefore, the models must be validated by verification, validation & accreditation (VVA)
technologies and optimized by optimization algorithms. Besides, simulation and retrospective
technologies can enable rapid diagnosis of quality defects and feasibility verification. Since the
virtual models must co-evolve with constant changes in the physical world, model evolution
technologies are needed to drive the model update. During the operation of DT, a huge volume
of data is generated. To extract useful information from raw data, advanced data analytics and
fusion technologies are necessary.
The process involves data collection, transmission, storage, processing, fusion, and visualiza-
tion. DT-related services include application service, resource service, knowledge service, and
platform service. To deliver these services, it requires application software, platform architec-
ture technology, service oriented architecture (SoA) technologies, and knowledge technologies.
Finally the physical entity, virtual model, data and service of DT are interconnected to enable
interactions and exchange information. The connection involves Internet technologies, interac-
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Figure 3.5. Framework of enabling technologies for Digital Twin

tion technologies, cyber-security technologies, interface technologies, communication protocols,
etc.

3.3 Digital Twins in Industry 4.0
A digital twin integrates all manufacturing processes (Qi and Tao, 2018), as shown in Figure
3.6:
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Figure 3.6. Digital twin in manufacturing

1. Digital Twin Based Product Design
In the design phase, it involves back-and-forth interactions between the expected, inter-
preted, and physical worlds. Based on digital twin, the digital representation (i.e., virtual
models) of the physical product is created in the interpreted world (i.e., virtual world).
The virtual models reflect both the expectations in the designer’s mind, and the practical
constraints in physical world. Digital twin enables the iterative optimization of design
scheme to guide the designers to iteratively adjust their expectations and improve the
design models, achieving personalized product design.
In addition, digital twin driven virtual verification can quickly and easily forecast and
verify product functions, behavior, structures and manufacturability, etc.. Taking advan-
tage of digital twin, it can accurately find the defect of design in virtual world and take
rapid changes, which make the improvement of the design, avoiding tedious verification
and testing.

2. Smart Manufacturing in Digital Twin Workshop/Factory
Next, the proven product design is input into the smart workshop or factory to be man-
ufactured. From the input of raw material to the output of finished products, the whole
manufacturing process is managed and optimized through digital twin. The virtual work-
shop or factory include the geometrical and physical models of operators, material, equip-
ment, tools, environment, etc., as well as the behaviors, rules, dynamics models and oth-
ers. Before they commit to manufacturing the products, the manufacturing resources and
capacities are allocated, and production plan is devised to predefine the manufacturing
process. The virtual workshop or factory simulate and evaluate the different manufactur-
ing strategies and planning until a satisfactory planning is confirmed.
In the actual manufacturing execution stage, the real-time monitoring and adjustment
of manufacturing process are realized through virtual-physical interaction and iteration.
The virtual models update themselves based on the data from the physical world, to
keep abreast of the changes. And the problems are rapidly found out and the optimal
solution is developed, through simulation in virtual world. According to simulation in
virtual workshop or factory, the manufacturing process is adjusted to achieve optimal
manufacturing (e.g., accuracy, stability, high efficiency and product quality).

3. Product Digital Twin for Usage Monitoring
The virtual model of product is created to establish the product digital twin. The product
digital twin would always keep in company with the product to provide the value-added
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services. Firstly, the product in use is monitored in real time, as the product digital
twin continually records the product usage status data, use environment data, operating
parameters, etc. Consequently, users can keep abreast of the latest state of the product.
Secondly, the virtual model can simulate the operation conditions of product in different
environments.
As a result, it can confirm what effects the different environmental parameters and op-
eration behaviors would have on the health, lifetime, and performance, etc., so as to
control the status and behaviors of physical product (e.g., change the operating parame-
ters). Thirdly, based on the real-time data from physical product and historical data, the
product digital twin is able to accurately predict the product remaining life, faults, etc..

4. Digital Twin as Enabler for Smart MRO
Based on the prediction for health condition, remaining life, and faults, the proactive
maintenance is carried out to avoid the sudden downtime. Furthermore, when a fault
occurs, with the ultra-high-fidelity virtual model of the product, the fault would be visually
diagnosed and analyzed, so that the position of faulty part and the root cause of fault
are displayed to users and servicemen. Thereby, the MRO strategies (e.g., disassembly
sequence, spare parts, and required tools) are developed to recovery the product.
However, before starting the actual MRO (both proactive and passive), the walkthrough
about MRO strategies would be executed in the virtual world based on virtual reality and
augmented reality. As the mechanical structure of the parts and the coupling between
each other are faithfully reflected by the virtual models, it can identify whether the MRO
strategies are effective, executable and optimal. Once the MRO strategies are determined,
they will be executed to recovery the product. Last, the data from the different stage of
product lifecycle are accumulated and inherited to contribute to the innovation of the
next generation product.

3.4 Digital Twin platforms
To create Digital Twin there are several platforms: Eclipse Ditto, Bosch IoT Things, AWS
IoT (Device Shadow Service), Azure Digital Twins. Between these, for example, Eclipse Ditto
displays key advantages compared to the other platforms: it is an open-source project, offers
a wide range of connectivity services, highly customizable, embraces the concept of “Device-
as-a-Service” (especially relevant in a Digital Twin scenario), extensible with Eclipse Vorto
seamlessly.
However, the price to pay in exchange for the listed benefits is a steep learning curve and,
therefore, a high barrier to entry for developers. For this reason in the thesis is used Bosch IoT
Things platform that alleviates the problem, by bringing together Eclipse Hono, Eclipse Ditto
and Eclipse hawkBit: due to its pre-configured format, developers do not need to integrate
the different open source projects. The trade-off for a more user-friendly environment is the
subscription cost: Bosch IoT Things sets a limit to the number of API calls and managed data
volume to the free version, besides which it is necessary to own a paid subscription.
It also provides the following advantages:

• A wide range of connectivity services that will be useful in the execution engine imple-
mentation

• A built-in search index, helpful to retrieve things that satisfy given conditions
• A selective change notification system, which allow to select only a set of desired events
• A generic yet extensible description language using JSON, upon which a new ad-hoc

description language will be based
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• The benefits provided by a cloud platform like: security, flexibility, mobility insight, qual-
ity control, disaster recovery, loss prevention, automatic software updates, competitive
edge, sustainability

3.4.1 Bosch IoT Things
The following subsection contains parts of the Bosch IoT Things documentation, which can be
found at the following link: https://docs.bosch-iot-suite.com/things/.
Bosch IoT Things enables applications to manage digital twins of IoT device assets in a simple,
convenient, robust and secure way. Based on the digital twin approach, applications can manage
asset data, get notified automatically on all relevant changes of their IoT devices, and share
device data and functionality across the layers of their application or with 3rd-party applications.
The digital twins of your tools, cars, sensors, and other web-enabled things are subsequently
able to interact with one another. You can also enrich your digital twins with further capabilities
based on the information or functionality provided by additional systems. General aspects:

• Ready-to-use cloud offering
– Bosch IoT Things is part of pre-configured packages with connections between all its

microservices
– Can also be booked stand-alone

• Fully managed, shared cloud service
– Various service plans: free (for evaluation), starter and standard
– Pay-as-you-grow price model
– Online calculator to estimate the consumption for your scenario

• High availability & reliability
– Always-on (availability 99,5%)
– High resilience of the system

• Scalability
– Growth on demand
– Quick response to increased data volume and transactions

• Open & flexible
– Based on open source project: Eclipse Ditto
– Flexibility to integrate with 3rd-party applications and other infrastructures

3.4.2 Overview
Each Thing consists of:

• A thing ID
• A policy ID which links to a Policy containing the authorization information
• A definition that documents how a feature’s state is structured, and which behavior/ca-

pabilities can be expected from such a feature
• Attributes: intended for managing static meta data of a Thing which does not change

frequently

https://docs.bosch-iot-suite.com/things/
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Figure 3.7. Domain model of a Thing

• Features: a Thing can be designed with as many Features as desired. Usually, features
are intended for managing dynamic meta data

To represent a Thing operatively in Eclipse Ditto, a JSON format is used. Here an example of
one Thing with one Attribute and one Feature:
{

"thingId": "my.namespace:myFridge",
"policyId": "my.namespace:myFridgePolicy",
"definition": "digitaltwin:DigitaltwinExample:1.0.0",
"attributes": {

"location": "Kitchen"
},
"features": {

"temperature": {
"properties": {

"cur_temp": 5
}

}
}

}

3.4.3 Example
Figure 3.8 shows an example of an e-bike deployment of the multiple actors which can access
the Digital Twin and shows that the location and battery features could rely on Eclipse Vorto
function block definitions, while the guarantee feature is free form, to emphasis that using such
definitions is optional.
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Figure 3.8. Bosch IoT Things example architecture
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When implementing your digital twin you can re-use already existing function blocks, or create
some new ones, specific to your devices. The data, where the status information for your digital
twin come from, can be diverse. You can imagine for example that:

• the data representing the battery level comes from the ebike directly,
• the location coordinates are sent by a navigation system which is coupled to the physical

ebike,
• the guarantee information is stored in a CRM system.

3.4.4 Implementation and Deployment
Digital twins are typically composed of multiple implementations for their different features.

• For features that mainly represent a state with properties (e.g. device state),
the state management within Bosch IoT Things can be used. This state is then updated
e.g. by the devices using a device connectivity layer like Bosch IoT Hub, or by a business
application that updates configuration properties within this state.

• The Things service then cares about applying the state changes and notifying all rel-
evant components about the changes. Functionality that is not reflected as state (e.g.
events, operations, triggers), is managed by Bosch IoT Things as messages. Messages
can be sent to features and/or received from features. These messages are not processed
within the Things service but are routed and dispatched to the respective implementation,
which is provided separately.
Functionality of IoT devices is handled this way using messages and the Things service
routes the messages from/to the device connectivity layer, e.g. using Bosch IoT Hub.
Depending on the type of operation, these messages are either one-way messages or are
correlated with response messages in order to represent the result of an operation.

• Features with other types of functionality or features representing state that
is managed externally, must be implemented by integrating separate microservices/-
components. These microservices are responsible to listen to signals/notifications coming
from the Things service, process the respective signal and optionally send responses. These
microservices can use one of the provided bindings to integrate with the Things service
(WebSocket, AMQP 1.0, or AMQP 0.91).

Summarized, this means that for “simple” digital twins, mainly consisting of device state and
device functionality, the management of Bosch IoT Things integrated with a device connectivity
layer like Bosch IoT Hub is sufficient. For more complex digital twins you can extend this
pattern, by integrating separate microservices/components which implement specific features.

3.4.5 Communication
In Figure 3.9, there is a bidirectional communication between a board (equipped with a tem-
perature sensor and a LED) and the Bosch IoT Hub:

• The board transmits the detected temperature and the LED status to the Bosch IoT
Hub periodically (according to a time interval), via MQTT. A client is able to query the
detected temperature and the LED status to Bosch IoT Hub via the HTTP REST API

• A client is able to set the value of the LED remotely, sending a command to Bosch IoT
Hub (via HTTP REST API) that then is forwarded to the board (via MQTT)

For the following example, it is necessary to own a Bosch IoT Suite subscription.
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Figure 3.9. Communication example

The first step is to create a namespace (all things and policies are required to be created with
a namespace):

1. Go to “dashboard”
2. Navigate to the “namespace” tab
3. Input the desired namespace name following the reserve domain name notation (in the

example “my.test”)
Then, it is necessary to create a token to access the HTTPS API:

1. Click the user icon
2. Go to “oAuth2 Clients”
3. Follow the instructions to generate the token
4. Copy the token to a temporary document

In order to execute the device registration:
1. Go to the Bosch IoT Suite Device Provisioning API page
2. Authorize API request via the authorization token, by clicking on the “Authorize” button

on the upper right corner and paste the token into the dedicated input field
3. Provide the “service-instance-id” on the required input-field (it can be found in the “Cre-

dential” section of the dashboard)
4. Edit the body request. In the example:

{
"id":"my.test:octopus",
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"hub":{
"device":{

"enabled":true
},
"credentials":{

"type":"hashed-password",
"secrets":[

{
"password":"<any-password>"
}

]
}

},
"things":{

"thing":{
"attributes":{

"name":"octopus",
"type":"octopus board"

},
"features":{

"temp_sensor":{
"properties":{

"value":0
}

},
"LED":{

"properties":{
"value":0

}
}

}
}

}
}

5. Send the request and save the response containing the policy ID of the just created thing
(the device provisioning request generated a default policy for the thing) and authorization
ID for the device (it will be necessary for the device to access the IoT Hub)

In order to add a subject to the policy and in the example, to give read access to the registered
thing on the thing dashboard:

1. Go to the Bosch IoT Things HTTP API page
2. Select the

"PUT /policies/policyId/entries/label"

API call
3. Authorize the API request again, if necessary (each token lasts for 30 minutes)
4. Provide the previously received policy ID and set the desired label for the new subject
5. Edit the body request (with the correct technical user id). In this example:

{
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"subjects":{
"bosch:<your-technical-user-id>":{

"type":"bosch-id"
}

},
"resources":{

"thing:/":{
"grant":[

"READ"
],
"revoke":[
]

}
}

}

Upon success, the thing should be visible in the dashboard, under the “Things” section.
A Python script simulates the board. Due to the fact that the MQTT communication with
Bosch IoT Hub is encrypted, it is necessary to download the server certificate for MQTT TLS
via the following command:
curl -o iothub.crt https://docs.bosch-iot-suite.com/hub/cert/
iothub.crt

In order to change the state of the LED, another HTTP API call will be issued with the Bosch
IoT Things HTTP API page:

1. Go to the Bosch IoT Things HTTP API page
2. Select the

"POST /things/thingId/features/featureId/inbox/
messages/messageSubject"

API call
3. Authorize the API request again, if necessary (each token lasts for 30 minutes)
4. Edit the “thingId”, “featureId” and the “messageSubject” fields, and the body to the

desired value of the LED
5. Click “Execute”

In order to retrieve all the data associated to the board:
1. Go to the Bosch IoT Things HTTP API page
2. Select the

"GET /things/thingId"

API call
3. Authorize the API request again, if necessary (each token lasts for 30 minutes)
4. Edit the thingId
5. Click “Execute”
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Chapter 4

Framework

In this chapter, after providing an overview of the most important concepts of Industry 4.0 and
digital twins, we describe the structure of our framework, the intermediate state between the
concepts previously explained and the software that we will use. The chapter is structured as
follows:

• In Section 4.1: we give an overview on how Digital Twins can be represented in an
Industry 4.0 scenario;

• In Section 4.2: we explain an architecture representation of the previous overview;
• In Section 4.3: we provide an example of everything described so far;
• In Section 4.4: we define a general description of our use case, in particular of: the

available services, the target and the orchestrator;
• In Section 4.5: we underline technological aspects of our use case, that will be presented

in detail in the next chapters.

4.1 Introduction
The evolution of technologies in the fields of communication, networking, storage and computing
that found its way in the traditional world of industrial automation, increase productivity and
quality to ease workers’ lives and define new business opportunities, goes under the name of
smart manufacturing or Industry 4.0, as fully explained in the chapter 2 . The technological
foundation of smart manufacturing consists of cyber-physical systems and the Internet-of-Things
(IoT). Each IoT device in a smart factory can be coupled with a digital twin, that is, a dynamic
virtual representation of the physical system across its life-cycle using real-time sensor data.
Currently, the manufacturing process itself, the involved devices, and how they interact, is
designed by human experts in a traditional way. Digital factory is a key concept. It aims at
using digital technologies to promote the integration of product design processes, manufacturing
processes, and general collaborative business processes across factories. An important aspect
of this integration is to ensure interoperability between machines, products, processes, and
services. A digital factory consists of a multi-layered integration of the information related to
various activities along the factory and related resources. Actors can fall in different categories,
being humans (i.e., final users or participants in the production process), information systems
or industrial machines. These physical entities must have a faithful representation in the digital
world, usually referred to as digital twins.
A digital twin (DT) exposes a set of services allowing to execute certain operations and produce
data describing its activity, as widely described in chapter 3. We can imagine these data stored
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in a factory data space together with other information, e.g., data available from the company
and production history, worker suggestions and preferences. Such services are typically used to
query or manipulate the state of the system, and associated data are leveraged for diagnostics
and prognostics. The availability of DT services and data can have a huge impact on the
design of manufacturing processes, by allowing automatic recovery and optimization, and even
automatic composition of the intermediate steps for achieving a production goal.
Inspired by the research about automatic orchestration and composition of software artefacts,
such as Web services, we argue that:

• an important step towards the development of new automation techniques in smart man-
ufacturing is the modeling of DT services and data as software artifacts;

• the principles and techniques for composition of artifacts in the digital world can be
leveraged to improve automation in the physical one.

A crucial difference between traditional software artifacts used in composition techniques and
DTs is that DTs may not share the same view of the world. Modern information systems and
industrial machines may natively come out indeed with their digital twin. In other cases, espe-
cially when the approach is applied to already established factories and production processes,
digital twins are obtained by wrapping actors that are already in place. In such scenarios,
data management techniques (including integration and exchange) are a key ingredient for DTs
interoperability

4.2 Architectural Model
At the foundation of the contribution of the thesis there is the architectural model proposed
in (Catarci et al., 2019), which we will briefly review in this section. This model, inspired by
the Roman model for service composition (formally described in the next chapter 5), considers
smart manufacturing scenarios where DTs of physical systems – or, simply, twins – provide
stateful services wrapping the functionalities of machines and tasks of human operators. In
such contexts, data are usually available through several sources not sharing a common schema
and vocabulary, as DTs come from different vendors.
It is reasonable to consider an heterogeneous data space where a mediator is present and it
also takes the role of translator between different formalisms and access methods. We consider
learning as a fundamental feature of DT. Learned functions include the automatic generation
of alarms, but also automatic triggering of actions and status changes. Additionally, twins can
be queried on learned functions and, as a result, the data space is far more dynamic than in
more traditional scenarios. As in modern micro-services architectures, notifications based on
publish&subscribe is a common architectural pattern, and therefore we provide for subscriptions
to events generated by other DTs.
We consider an architecture for a smart manufacturing process based on DTs as depicted in
Figure 4.1, where the main components are the DTs, the data space, human supervisors and a
mediator.
DTs wrap physical entities involved in the process. These physical entities can be manufacturing
machines or human operators. A DT exposes a Web API consisting, in general, of three parts:

• the synchronous interface: allows to give instructions to the physical entity. These
instructions may, for example, produce a state change in a manufacturing machine (in
case the twin is over a machine) or ask a human operator to perform a manual task (in
case the twin is over a manufacturing worker);

• the query interface: allows for asking information to the physical entity about its state
and related information; noteworthy, these latter can be obtained by applying diagnostic
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Figure 4.1. The proposed architecture

and prognostic functions results of machine learning;
• the asynchronous interface: generates events available to subscribers. It is important

to note how manufacturing machines and human actors can be considered identical from
the point of view of the offered API, e.g., human actors produce asynchronous events as
well, for example generating alarms.

The data space contains all the data available to the process. These data are heterogeneous
in their nature from the access technology point of view, the employed schema (or its absence)
and the employed vocabulary. It is important to note how the DTs contribute to the data space
with both the query API and the asynchronous one. Other sources for the data space may
include relational and no-SQL databases or unstructured sources such as spurious files, which
constitute the factory information system.
The human supervisor is the one defining the goals of the process in terms of both final outcomes
and key performance indicators to be obtained. In the Roman model lingo, this is also called
the target service. In order to reach the goal defined by the human supervisor, available twins
and data must be integrated. This task is fulfilled by the mediator. The mediator acts in two
phases:

• the synthesis phase: during this the specifications of the APIs exposed by digital twins
and the meta-data (e.g. data source schemas) available in the data space, are composed
in order to construct a mediator process;

• the execution phase: the mediator runs its program by preparing the input messages
for the single twins involved in the proper sequencing/interleaving.

Indeed, as each twin may potentially adopt a different language and vocabulary, in order to
compose required input/output messages, the mediator translates and integrates the data avail-
able in the data space to comply with the format requested by the specific called service. An
important aspect of the proposed architecture is that multiple companies can participate in the
process (typically those ones involved in the value chain). Again, it is not reasonable to have
twins directly communicating with one another.
Once again, the role of the mediator is fundamental, being the component that can access the
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services offered by the twins available in the different companies.
1. The data space as a polystore

In digital factories, it is of strategic importance to provide effective mechanisms for search-
ing information along diverse and distributed data sources. Indeed, when dealing with
data management, organizations are becoming polyglot (Maccioni and Torlone, 2018):
they tend to adopt the data management systems that are most suitable to the kind of
data, that can significantly vary. Polystores, together with its first reference implementa-
tion BigDAWG (Duggan et al., 2015), have been proposed recently as a valuable solution
for this scenario. A polystore system provides a loosely coupled integration over multiple,
disparate data models and query languages.
In this system, queries are posed over islands of information, i.e. collections of data sources,
each accessed with a single query language, and the same data can be accessed from
multiple islands. Data transformation and migration in polystores have been considered
in (Dziedzic et al., 2016). In our approach, the data space can be modelled as a polystore.
We inherit the data modelling approach proposed in (Maccioni and Torlone, 2018) where
a polystore is made of a set of databases stored in a variety of data management systems,
each one potentially offered by a twin through the query interface. A collection of operators
act on the polystore with the aim of supporting the data access needs due to digital twin
composition.

2. Modelling the DTs
We model the behaviour of DTs as guarded automaton (by extending (Berardi et al.,
2005)): a DT wraps a physical entity which, in a production process, follows specific
stages/steps. The synchronous API of the twin corresponds then to input messages of the
guarded automaton. The main difference here consists in what the local storage contains
and how this influence automaton transitions and atomic processes. In (Berardi et al.,
2005), the local storage of a Web service contains variables instantiated and modified
by the automaton during the execution, and by messages sent by the mediator. Here
we extend to have autonomous threads enriching the local storage with measurements
coming from sensors and outcome of machine learning predictions. In this sense, data
provided by sensors and machine learning are somewhat similar. We add a further UStore
(where the U stands for uncertain) containing triples (s, m, c) where s is a variable name
corresponding to a sensor or a prediction task, m is the information measured or predicted,
and c is the confidence in this value.
As a consequence, we can define the transition conditions of the guarded automaton in
terms of UStore as well. The result is the possibility to include in the model automatic
transitions that are not the result of explicit message exchange. The data contained in the
local storage is part of the polystore defining the process. In order to query this data, each
digital twin provides the query API. The DT can additionally provide asynchronous data
to other twins and to the mediator itself through its asynchronous API. In particular,
asynchronous events can be generated in response to a change of the UStore or to the
transition of the twin automaton. Interested recipients subscribe to this events following
a publish/subscribe architectural pattern.

3. Actual and simulation perspectives
Machine learning represents a fundamental feature of DTs, especially for simulation pur-
poses. Most real systems that are confronted with multiple data streams benefit from
machine learning and analysis to make sense of the data. For example, machine learning
can automate complex analytical tasks, evaluate data in real time, regulate behavior with
the minimum need for supervision, and increase the likelihood of desired results (Madni
et al., 2019). The uses of machine learning within a DT include: supervised learning
(for example, using neural networks) of the preferences and priorities of the user in an
experimental test bed based on simulation (Schluse et al., 2017); learning without super-
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vision of objects and models using, for example, clustering techniques in virtual and real
environments (Madni and Sievers, 2018); and strengthening the learning of system and en-
vironment states in uncertain and partially observable operating environments. Another
fundamental feature of a digital twin is simulation.
We have already introduced the role of machine learning in the population of the UStore,
but it has a fundamental role in simulation too. In particular, when proposing possible
solutions, the mediator may require to simulate the result of operations on the twins
following the human-in-the-loop philosophy. When the supervisor takes a decision, the
actions in the proposed plan are executed in the real world and the actual results can
be used to improve the simulation feature in a reinforcement learning pattern. In order
to do this, both twins and data space have two perspectives. The actual perspective
reflects the current state of the physical world, whereas the simulation perspective allows
the mediator to perform simulations useful to produce alternatives for the supervisor. As
a result, each DT has two instances of the corresponding automaton, in different states
and with different values in the local storage. The same holds for the other data sources
composing the polystore. To access the functionalities of the simulation perspective, the
DT provides a further simulation API.

4. Semantics
The principal differences between the mediator proposed in (Berardi et al., 2005) and the
evolution we propose to meet the requirements of smart manufacturing, are (i) the way
the goal is defined by the supervisor, and (ii) the need for it to operate a translation over
the data available in the data space in order to perform its coordination task between
the digital twins required to reach the goal. In (Berardi et al., 2005), the goal of the
mediator was a guarded automaton to be synthesized combining the automatons of the
single services. This is not appropriate for our scenario, as it requires an expensive human
work and the vocabulary of the automaton to be compliant with that of twins.
We propose instead to formulate goals in terms of key performance indicators in a declar-
ative manner. In order to do that, the goal declaration must be translated in terms of
the input/output messages of twins’ automatons and the content of the data space. Ad-
ditionally, the mediator must be able to discover twins and their capabilities in terms of
offered services.

4.3 Example
In the following, we will give an intuition of the proposed approach by considering a cardboard
boxes real manufacturing scenario involving three companies:

• the cardboard manufacturer,
• the die cutter manufacturer,
• a delivery service.

For the sake of simplicity, we will consider three twins:
• the twin corresponding to the die cutter manufacturer,
• the twins corresponding to the delivery services (potentially they might be many),
• a twin corresponding to a single die cutter installed at the cardboard manufacturer factory

The polystore will contain the APIs of the twins and the historical production and shipping
data from the die cutter manufacturer and the delivery services.
The digital twin corresponding to the die cutter contains at least two states: mounted and un-
mounted. At any time, the twin provides information about the number of rotations performed
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and the residual life expectancy. The twin corresponding to the die cutter manufacturer may
provide information about the time needed to produce a new die cutter, whereas the twin of a
delivery service may provide information about the expected shipping time from the die cutter
manufacturer factory to the cardboard manufacturer factory.
The twin corresponding to the die cutter may expose a simulation API that can help to simulate
what happens if the die cutter undergoes a given setting of the rotation speed throughout a 24h
period.
The production goal may be to avoid interruptions in the production process. Currently, for
economic reasons, manufacturers prefer not to store in the warehouse replacement production
machines and tools. As a consequence, the supervisor may instruct the mediator to order a new
die cutter by predicting when the current one is going to break, taking into account production
time on the die cutter manufacturing site and shipping time. In order to satisfy the goal, the
mediator will discover the different services and automatically understand how to combine them.

4.4 Use Case
The example described above refers to the classical composition of services of the Roman model
that assumes both target and available services to be deterministic. Previous works have gener-
alized the technique in the case the target requests action according to a probability distribution,
and collects rewards for being able to execute actions (Brafman et al., 2017) (see also Section
5.4). An interesting feature of that approach is that, if a composition exists, the computed or-
chestrator coincides with the exact solution; otherwise it provides an approximate solution that
maximizes the expected sum of values of user requests that can be serviced. Nevertheless, this
models does not capture certain aspects of the available services, such as stochastic behaviour
or action execution costs. For this reason we define a new extension with stochastic service
composition, as we describe in detail later in Section 6.
In this section, we propose an use case in the context of Industry 4.0 whose aim is to motivate
the extension to Service Composition with Stochastic Services, and the application of such novel
composition technique to the orchestration of Digital Twins.

4.4.1 Scenario: Ceramics production
The scenario is the following: there is an industrial process of ceramics production in which a
product must be processed sequentially in different ways.

Available Services. Each sub-task can be completed by a set of available services. The tasks
to be carried out in order to complete the industrial process are: provisioning, moulding, drying,
first baking, enamelling, painting, second baking and shipping. Such tasks can be accomplished
by different types of machines or human workers. Each available service that can perform the
task can be seen as finite state machines with a probability and a reward associated to each
action. There could be multiple services for the same task, e.g. multiple version of a machine
(new one and old one) and a human that can perform the task required, and so on.
When an available service is being assigned a task, this has a task cost in terms of time taken
and resources needed for the completion of the operation on that specific service. Each available
service is simulated by its own process. Usually, in terms of task cost, machines are cheaper
than human workers, because they can perform their task much faster. However, the machines
have a certain probability to break when they perform their job. In such a case, the machine
must be repaired as soon as the operation has been carried out, that incurs in a repair cost for
that specific machine.
These parameters could change: although the machine is more efficient, if it begins to have
significant wear (so higher probability to break and higher cost to be repair), it will be more
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convenient to use the human to perform the task Services like provisioning and shipping have
a single state, with no possibility to broken.

Target. The product to be assembled will be represented by the target of the model. The
target represents what the user want to do. Given the available services the user choose to
do an action that is performed by the dedicated service. The action performed has a certain
probability and a reward associated. Since we are in an Industry 4.0 scenario, aimed at the
ceramics production, we imagine a linear process where is performed one action at a time by
an available service.

Orchestrator. The goal of the orchestrator is to orchestrate all the services according to
the target requests in such a way that the overall expected sum of rewards is maximized (or,
equivalently, that the expected sum of costs are minimized), even if the orchestration is not
guaranteed to succeeds in all the cases, as in (Brafman et al., 2017). However, differently from
(Brafman et al., 2017), in the optimization problem, the orchestrator should also take into
account the costs and probabilities associated to the services’ actions. We remark that this is a
limitation of the previous work (Brafman et al., 2017).

4.4.2 Discussion
From the above description of the use case scenario, it is clear that the composition technique
must be able to handle the stochasticity of the available services’ transitions, as well as their re-
ward/cost. Indeed, an optimal orchestration depends on several parameters, like the task costs,
the breaking probabilities and the repair costs, one for each candidate service for accomplish a
certain task. Therefore, it is not straightforward to determine a priori which service a certain
task must be assigned to. For example, it might be the case that despite the task cost of a
machine is low, its breaking probability might be high, and considering the repair cost it might
let us to prefer a human worker for that task. We argue that our model can fit very well our
use case. Indeed, we can reduce the problem to an instance of stochastic service composition
suggested above in which a service can capture the task cost, the breaking probability, and the
repair cost.
In Chapter 6 we will formally describe the new framework, that also work with stochastic
services, and we will provide a solution technique for such problem.

4.5 Technological Aspects
We implemented a proof-of-concept by representing each finite state machines (available services
and the target) as a Digital Twin, with all of them connected to the Bosch IoT Things platform.
We call each Digital Twin one at a time, where we give them the action to perform and wait
for the feedback (that the action has been performed) and the update status (after performing
the action).
All the available services and the target service are simulated in separated processes. They are
connected to the Bosch IoT platform. They communicate with the orchestrator through the
platform. The orchestrator process is connected to the Bosch IoT platform. Before the start
of the orchestration, the orchestrator downloads the formal specifications of all the available
services and the target service, i.e. the state machines with the transition probabilities, the costs
and the rewards. Then, it computes an optimal orchestration policy according to the underlying
optimization problem, i.e. the maximization of the expected observed rewards. Finally, it starts
waiting for requests from the target process. The target chooses the first action according to the
probability distribution, and sends it to the orchestrator process. The orchestrator dispatches
them to the chosen service according to the computed optimal policy, and then it waits until the
execution of the action is completed. The service executes the action (in the proof-of-concept,
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it is a no-op) and notifies the orchestrator of the completion of the task. The orchestrator, in
turn, notifies the target process that it can continue its execution. The target chooses a new
action according to the current action distribution, and the cycle continues.
The following chapters describe in greater detail each component of our system, as well as the
theoretical formalization of the new framework.
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Chapter 5

MDP and Stochastic Service
Composition

In this chapter, we report some preliminary notions to understand the technical content of the
next chapter. In particular, we will report: the definition of Markov Decision Processes (MDP)
(Puterman, 1994), a discrete-time stochastic control process very popular in the literature, and
the definition of the problem of service composition, with its stochastic variant, and how to
solve it using the so called Roman model (Berardi et al., 2003).
The chapter is structured as follows:

• In Section 5.1: we start with the mathematical definition of MDP and its main concepts;
• In Section 5.2: we continue with the various techniques for finding an optimal policy

like policy iteration and value iteration, providing their algorithms;
• In Section 5.3: we describe the problem of service composition, with reference to the

Roman Model;
• In Section 5.4: we explain the stochastic service composition taken from (Brafman et al.,

2017).

5.1 Definition
A Markov Decision Process (MDP) is a tupleM = 〈S,A, T,R, γ〉 where:

• S is the set of states,
• A is the set of actions,
• T : S × A → Prob(S) is the transition function that returns for every state s ∈ S and

action a ∈ A a distribution over the states,
• R : S ×A→ R is the reward function that specifies the average reward (i.e. a real value)

received by the decision-maker when performing action a in state s,
• γ is the discount factor, with 0 ≤ γ ≤ 1, that indicates the present value of future rewards.

With T (s, a, s′) we denote the probability to end in state s′ given the action a from s.
The discount factor γ deserves some attention. Its value highly influences the MDP, its solution,
and how the agent interprets rewards:

• if γ = 0, we are in the pure greedy setting, i.e. the agent is shortsighted and looks only at
the reward that it might obtain in the next step, by doing a single action;
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• the higher γ, the longer the sight horizon, or the foresight, of the agent: the far rewards
are taken into account for the current action choice;

• if γ < 1 we are in the finite horizon setting: namely, the agent is intrinsically motivated
to obtain rewards as fast as possible, depending on how γ is far from 1;

• when γ = 1 we are in the infinite horizon setting, which means that the agent considers far
rewards as they can be obtained in the next step. In other words, we may think the agent
as immortal, since the time the agent spend to reach rewards does not matter anymore.

A solution to an MDPM, called policy, is a mapping from states to a probability distribution
over a set of actions:

ρ : S → Prob(A) (5.1)

A policy is said deterministic if the probability distributions take only a single value, i.e. ρ is a
function of the form: ρ : S → A.
Given a sequence of rewards Rt+1, Rt+2, ..., RT , the expected discounted return Gt at time step
t is defined as:

Gt :=
T∑

k=t+1
γk−t−1Rk (5.2)

where can be T =∞ and γ = 1 (but not both).
The value function of a state s, the state-value function vρ(s) is defined as the expected return
when starting in s and following policy ρ, i.e.:

vρ(s) := Eρ[Gt | St = s],∀s ∈ S (5.3)

Similarly, we define qρ, the action-value function for policy ρ, as:

qρ(s, a) := Eρ[Gt | St = s,At = a], ∀s ∈ S, ∀a ∈ A (5.4)

Notice that we can rewrite (5.3) and (5.4) recursively, yielding the Bellman equation:

vρ(s) =
∑
a

ρ(a | s)
(
R(s, a) + γ

∑
s′

P (s′|s, a)v(s′)
)

(5.5)

where we used the definition of the transition function:

T (s, a, s′) = P (s′|s, a) (5.6)

We define the optimal state-value function and the optimal action-value function as follows:

v∗(s) := max
ρ

vρ(s), ∀s ∈ S (5.7)

q∗(s, a) := max
ρ

qρ(s, a),∀s ∈ S,∀a ∈ A (5.8)

Notice that with (5.7) and (5.8) we can show the correlation between v∗ρ(s) and q∗ρ(s, a):

q∗(s, a) = Eρ[Rt+1 + γv∗ρ(St+1)|St = s,At = a] (5.9)

We can define a partial order over policies using value functions, i.e. ∀s ∈ S.ρ ≥ ρ′ ⇔ vρ(s) ≥
vρ′(s).

An optimal policy ρ∗ is a policy such that:

ρ∗ ≥ ρ, ∀ρ (5.10)
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Definition 5.1. The definition of optimal policy is: the value of a policy ρ at state s, denoted
by V ρ(s), is the expected sum of (possibly discounted by a discount factor γ, with 0 ≤ γ ≤ 1)
rewards when starting at state s and selecting actions based on ρ. Formally:

V ρ(s) = Es∼s0,ρ,T

[ ∞∑
i=0

γiri+1

]
(5.11)

Typically, the MDP is assumed to start in an initial state s0, so policy optimality is evaluated
w.r.t. V ρ(s0). Every MDP has an optimal policy ρ∗. In discounted cumulative settings, there
exists an optimal policy that is Markovian, i.e. ρ depends only on the current state, and it is
deterministic (Puterman, 1994).

5.2 Techniques for finding an optimal policy
The algorithms used for solving the optimal control in MDPs are based on estimating the value
function at all states. The two classical algorithms used to determine the optimal policy for a
MDP are:

• Policy iteration algorithm
Once a policy ρ, has been improved using υρ to yield a better policy ρ∗, we can then
compute υρ′ and improve it again to yield an even better ρ∗∗. We can thus obtain a
sequence of monotonically improving policies and value functions:

ρ0
E−→ υρ0

I−→ ρ1
E−→ υρ1

I−→ ρ2
E−→ ...

I−→ ρ∗
E−→ υ∗,

where E−→ denotes a policy evaluation and I−→ denotes a policy improvement. Each policy is
guaranteed to be a strict improvement over the previous one (unless it is already optimal).
Because a finite MDP has only a finite number of policies, this process must converge to
an optimal policy and the optimal value function in a finite number of iterations.
This way of finding an optimal policy is called policy iteration. A complete algorithm is
given below. Note that each policy evaluation, itself an iterative computation, is started
with the value function for the previous policy. This typically results in a great increase
in the speed of convergence of policy evaluation (presumably because the value function
changes little from one policy to the next).

• Value iteration algorithm
One drawback to policy iteration is that each of its iterations involves policy evaluation,
which may itself be a protracted iterative computation requiring multiple sweeps through
the state set. If policy evaluation is done iteratively, then convergence exactly to υρ occurs
only in the limit. In fact, the policy evaluation step of policy iteration can be truncated
in several ways without losing the convergence guarantees of policy iteration.
One important special case is when policy evaluation is stopped after just one sweep
(one update of each state). This algorithm is called value iteration. It can be written as a
particularly simple update operation that combines the policy improvement and truncated
policy evaluation steps:

vk+1(s) = max
a

E[Rt+1 + γυk(St+1) | St = s,At = a] =

max
a

∑
s′,r

p(s′, r|s, a)[r + γυvk(s′)], (5.12)

for all s ∈ S.
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Algorithm 5.1. Policy Iteration (using iterative policy evaluation)
1. Initialization

V (s) ∈ R and ρ(s) ∈ A(s) arbitrarily for all s ∈ S
2. Policy Evaluation

Loop:
∆← 0
Loop for each s ∈ S:
υ ← V (s)
V (s)←∑

s′,r p(s′, r|s, ρ(s))[r + γV (s′)]
∆← max(∆, |υ − V (s)|)

until ∆ < θ (a small positive number determining the accuracy of estimation)
3. Policy Improvement
policy − stable← true
For each s ∈ S:

old− action← ρ(s)
ρ(s)← arg maxa

∑
s′,r p(s′, r|s, a)[r + γV (s′)]

If old− action 6= ρ(s), then policy − stable← false
If policy − stable, then stop and return V ≈ υ∗ and ρ ≈ ρ∗: else go to 2

For arbitrary υ0, the sequence υk can be shown to converge to υ∗ under the same conditions
that guarantee the existence of υ∗. Like policy evaluation, value iteration formally requires
an infinite number of iterations to converge exactly to ρ∗.
In practice, we stop once the value function changes by only a small amount in a sweep.
The algorithm below shows this kind of termination condition.

Algorithm 5.2. Value Iteration
Algorithm parameter: a small threshold θ > 0 determining accuracy of estimation.
Initialize V (s), for all s ∈ S+, arbitrarily except that V (terminal) = 0

Loop:
∆← 0
Loop for each s ∈ S :
υ ← V (s)
V (s)← maxa

∑
s′,r p(s′, r|s, a)[r + γV (s′)]

∆← max(∆, |υ − V (s)|)
until ∆ < θ
Output a deterministic policy, ρ ≈ ρ∗, such that:

ρ(s) = arg maxa
∑
s′,r p(s′, r|s, a)[r + γV (s′)]

Value iteration effectively combines, in each of its sweeps, one sweep of policy evaluation
and one sweep of policy improvement. Faster convergence is often achieved by interposing
multiple policy evaluation sweeps between each policy improvement sweep.
In general, the entire class of truncated policy iteration algorithms can be thought of
as sequences of sweeps, some of which use policy evaluation updates and some of which
use value iteration updates. Because the max operation in (5.12) is the only difference
between these updates, this just means that the max operation is added to some sweeps
of policy evaluation.
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5.3 Service Composition
The problem of service composition has been considered in the literature for over a decade,
starting from seminal manual approaches, e.g., (Medjahed et al., 2003; Yang and Papazoglou,
2004; Cardoso and Sheth, 2004), which mainly focused on modeling issues as well as on auto-
mated discovery of services described making use of rich ontologies, to automatic ones based
on planning, e.g., (Wu et al., 2003; Pistore et al., 2005) or on KR techniques, e.g., (McIlraith
and Son, 2002), or on automated synthesis (Berardi et al., 2003; Hu and De Giacomo, 2013; De
Giacomo et al., 2013). The reader interested in a survey of approaches can refer to (Hull, 2008;
Su, 2008; De Giacomo et al., 2014).
Here we concentrate on the approach known in literature as the “Roman model" (Berardi et al.,
2003): each available (i.e., to be used in the composition, therefore referred to as component)
service is modeled as a finite-state machines (FSM), in which at each state, the service offers
a certain set of actions, where each action changes the state of the service in some way. The
designer is interested in generating a new service (referred to as target) from the set of existing
services. The required service (the requirement) is specified using a FSM, too.
The computational problem is to see whether the requirement can be satisfied by properly
orchestrating the work of the component services. That is, by building a scheduler (called the
orchestrator) that will use actions provided by existing services to implement action request of
the requirement. Thus, a new service is synthesized using existing services.

The Roman Model Now we describe more formally the Roman model and its components.
A service is a tuple S = 〈Σ, σ0, F,A, δ〉 where:

• Σ is the finite set of service states,
• σ0 ∈ Σ is the initial state,
• F ⊆ Σ is the set of the service’s final state,
• A is the finite set of services’ actions,
• δ ⊆ Σ×A→ Σ is the service’s deterministic and partial transition function.

We use the notation σ a−→ σ′ and σ′ ∈ δ(σ, a) interchangeably when δ is clear from the context.
We also write A(σ) to denote {a ∈ A : δ(σ, a) is defined}.
A service can be seen as a software artifact, distributed and built on top of different technolo-
gies, that export a description of themselves, accessible to external clients and communicate
through a commonly standard interface which enables interoperability. Actions in A denote
interactions between service and clients. The behaviour of each available service is described
in terms of a finite transition system that uses only actions from A.

A history h of a service S is a sequence of alternating states and actions (necessarily
ending with a state):

h = σ0, a1, σ1, a2, . . . , an, σn.
The available services are grouped into community, where they share a common set of actions
Σ (the actions of the community). The system service of a community C = {S∞, . . . ,Sn} is the
service Z = (Σz, δz0 , Fz, Az, δz) such that:

• Σz = Σ1 × · · · × Σn,
• σz0 = (σ10, . . . , σn0),
• Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n}
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• Az = A × {1, . . . n} is the set of pairs (a, i) formed by a shared action a and the index i
of the service that executes it.

• σ
(a,i)−−→ σ′ iff, for σ = (σ1, . . . , σn) and σ′ = (σ′1, . . . , σ′n), it is the case that σi a−→ σ′i in σi

and σj = σ′j for j 6= i.
Intuitively, Z is the service stemming from the product of the asynchronous execution of the
services in S. This is a virtual entity, i.e., without any actual counterpart, that offers a formal
account of the evolution of the available services, when the community is seen as a whole.
Note that in the transitions of Z, the service executing the corresponding action, is explicitly
mentioned. Also(a, i) ∈ A(σ) indicates that a can be executed by service i in the current state.
We denote the set of system service histories by Hz.
Given a service community C, a target service T is the desired service, described as a finite,
deterministic transition system that uses action from A.The target service provides a formal
characterization of a desired service that may not be available in the community. We denote
the set of possible target service histories by Ht. Informally, the target represents a business
process that one would like to offer to clients, where each state represents a decision point. At
each state, the client is provided with a set of options to choose among, each corresponding
to an action available in the state. Notice that typically the target service is not available.
Further, the only entities able to execute actions, i.e., activities, are the available services.
Thus, one cannot build the target service by simply combining the actions of the target service,
but has to resort to the available services, which impose constraints on the execution of ac-
tions,depending on the conversations they can actually carry out. An orchestrator is an entity
that has the ability of scheduling services on a step-by-step basis and coordinate the community
services so as to mimic the behavior of the target service. Differently put, the behavior obtained
by coordinating the services should present no differences, from the client perspective, with the
target service. Formally, an orchestrator for a community is a partial function γ:

γ : Σz ×A→ {1, . . . , n}

Intuitively, γ is a decision maker able to keep track of the way the services in the community
have evolved up to a certain point, and that, in response to an incoming action request, returns
the index of a service. The dynamics of the system is deterministic given the actions selected by
the user.Hence, together with the orchestrator choice, it determines a system history. That is,
an orchestrator defines a partial function from target-service histories to system histories, based
on the (partial) mapping from system state and action to a service and the (partial) mapping
from system state, action, and service, to the next system state.
We denote this mapping by τ . More formally, τ : Ht → Hz is defined inductively as follows:

• τ(σt0) = σz0.
• Let τ(ht) = hz, and let st, sz denote the last states, respectively, in ht, hz. Then, τ is

also defined on ht · a · s′t provided: a ∈ A(st) and s′t = δt(st, a), and that γ is defined on
(sz, a), and (a, γ(sz, a)) ∈ A(sz). That is, provided the orchestrator function is defined on
sz and a, assigning some value i, and δz is well defined on (sz, i), we have τ(ht · a · s′t) =
hz · a · δz(sz, (a, i)).

• Otherwise, τ(ht · a · s′t) is undefined.
If τ(ht) is well-defined, we say that target history ht is realizable by the orchestrator. The
orchestrator γ is said to realize a target service T if it realizes all histories of T . In this case,
γ is also called a composition of T . A target T is realizable if there exists an orchestrator that
realizes it.
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The problem of service composition in known to be EXPTIME-complete, in fact exponential on
the number of the available services (Berardi et al., 2003; Muscholl and Walukiewicz, 2008) and
techniques based on model checking, simulation, and ltl synthesis are available (De Giacomo
et al., 2014). Also, several variants have been studied, including the case of nondeterministic
(i.e., partially controllable but fully observable) available services (De Giacomo et al., 2013).
Example 5.1. To describe this setting in terms of the framework previously discussed, we
identify the following correspondences:

• the community ontology is simply Σ;

• the available services are the actual services in the community;

• the mapping from the available services to the community ontology is represented by the
transition systems that describe the available services (built from community actions);

• the client request is the target service (again, built from community actions).

5.4 Stochastic Service Composition
Unfortunately, it is not always possible to synthesize a service that fully conforms with the
requirement specification. This zero-one situation, where we can either synthesize a perfect
solution or fail, often is not very applicable. Rather than returning no answer, we may want
notion of the “best-possible" solution. A model with this notion has been developed in (Brafman
et al., 2017), where the authors discuss and elaborate upon a probabilistic model for the service
composition problem, first presented in (Yadav and Sardiña, 2011). In this model, an optimal
solution can be found by solving an appropriate probabilistic planning problem (e.g. an MDP)
derived from the services and requirement specifications.
Specifically, it is natural to make the requirement probabilistic, associating a probability with
each action choice in each state. This probability captures how likely the user is to request the
action in that state. Such information can be, initially, supplied by the designer, but can also
be learned in the course of service operation in order to adapt the composition to user behavior.
To model the value and likelihood of requests, we augment the target service model with two
additional elements. Pt will be a distribution over the actions given the state. Pt(s, a) is the
likelihood that a user will request a in target state s.
Technically, Pt(s) returns a distribution over the actions, or the empty set, when s is a terminal
state on which no actions are possible. Rt is the reward function, associating a non-negative
reward with the ability to provide the action requested by a user. Rt(s, a) is the value we
associate with being able to provide action a in state s.
Definition 5.2. Formally, a target service is T = 〈Σt, σt0, Ft, A, δt, Pt, Rt〉, where:

• Σt, δt0, Ft, A, δt are defined as before,

• Pt : Σt → π(A) ∪ ∅ is the action distribution function,

• Rt : Σt ×A→ R is the reward function.

Pt induces a probability density function over the set of all infinite target histories, which we
will denote by P∞. (This follows by the Ionescu-Tulcea extension theorem).
Rt can be used to associate a value with every infinite history.

Definition 5.3. The standard definition of the value of a history ht, which we adopt here, is
that of the sum of discounted rewards:

v(σ0, a1, σ1, · · · ) =
∞∑
i=0

λiRt(σi, ai+1), (5.13)



CHAPTER 5. MDP AND STOCHASTIC SERVICE COMPOSITION 51

where 0 < λ < 1 is the discount factor.

The discount factor can be viewed as measuring the factor by which the value of rewards is
reduced as time progresses, capturing the intuition that the same reward now is better than in
the future.
Definition 5.4. Given the above, we can define the expected value of an orchestrator γ to be:

(γ) = Eht∼P∞(v(ht), real(γ, ht)) (5.14)

where real(γ, ht) is 1 if ht is realizable in γ, and 0 otherwise. That is, v(γ) is the expected value
of histories realizable in γ.

Definition 5.5. Finally, we define an optimal orchestrator to be:

γ = arg max
γ′

v(γ′) (5.15)

We have the following theorem:
Theorem 5.1 (Brafman, De Giacomo, Mecella, and Sardina (2017)). If the target is realizable
and every target history has strictly positive value then γ realizes the target iff it is an optimal
orchestrator.

Proof. We prove the two directions of the equivalence separately.
• Necessity condition: ⇒. We want to prove that if the orchestrator γ realizes the target

is optimal. The thesis stems from the fact that if the set of histories realizable using
orchestrator γ contains the set realizable using orchestrator γ′, then v(γ) ≥ v(γ′).

• Sufficiency condition: ⇐. We want to prove that if the orchestrator is optimal, then
it realizes the target. We prove the statement by proving its contrapositive, i.e. any
orchestrator that does not realize some history, is non-optimal. Such thesis stems from
the fact that if, in addition, the set of histories realizable by γ but not by γ′ has positive
probability, then v(γ) > v(γ′). Now, if ht is not realizable by γ′, there exists a point in
ht where γ′ does not assign the required action to a service that can supply it. Thus, any
history that extends the corresponding prefix of ht is not realisable, and the set of such
histories has non-zero probability. Since we assume all histories have positive value, we
obtain the desired result.

In other words, if it is possible to realize the target requirement, then any orchestrator realizing
it is optimal, and any orchestrator that does not realize some history, is non-optimal. The
importance of this new model is that we now have a clear notion of an optimal orchestrator
that works even when the target service is not fully realizable, and this notion is clearly an
extension of the standard notion, coinciding with it when the service is realizable by some
orchestrator. An optimal controller is simply one that is able to handle more (in expectation)
valued histories.
We now explain how to solve the above model by formulating an appropriate MDP.
Definition 5.6. The composition MDP is a function of the system service and the target service
as followsM(Z, T ) where:

• SM = ΣZ × ΣT ×A ∪ {sM0}

• AM = {aM0, 1, . . . , n}
• TM(sM0, aM0, (σz0, σt0, a)) = Pt(σt0, a)



CHAPTER 5. MDP AND STOCHASTIC SERVICE COMPOSITION 52

• TM((σz, σt, a), i, (σ′z, σ′t, a′)) = Pt(σ′t, a′), if σz
(a,i)−−→ σ′z and σt

a−→ σ′t

• R((σz, σt, a), i) = Rt(σt, a) if (a, i) ∈ A(σz) and 0 otherwise.

It can be shown that:
Theorem 5.2 (Brafman, De Giacomo, Mecella, and Sardina (2017)). Let π be an optimal policy
for M(Z, T ). Then, the orchestrator γ such that γ((σz, σt), a) = π(σz, σt, a) is an optimal
orchestrator.

Proof. The result follows from the fact that there is a one-to-one correspondence between or-
chestrators and policies forM(Z, T ), via the relationship: γ((σz, σt), a) = ρ(σz, σt, a), and the
fact that the value of policy ρ so defined equals v(γ).



53

Chapter 6

Service Composition with Stochastic
Services

In this chapter we extend the stochastic model proposed in (Brafman et al., 2017) where not
only the target service but also the services behave stochastically. The chapter is structured as
follows:

• In Section 6.1: we provide an introduction about all mathematical concepts used in
service composition with stochastic services;

• In Section 6.2: we explain how computing an optimal orchestrator with this extension;
• In Section 6.3: we define an example of how the definitions defined above can be applied.

6.1 Introduction
Each stochastic transition over the services is associated to a reward signal; hence, the orches-
trator can take into account the reward associated to delegations to services. Such a model
has greater expressivity as it allows to model services with richer features, e.g. a service action
might be associated to a cost of execution (i.e. a negative reward), that might induce the or-
chestrator to prefer another service. Obviously, this is a more general definition in which the
previous formalization is a special case.
Definition 6.1. A stochastic service is a tuple S̃ = 〈Σs, σs0, Fs, A, Ps, Rs〉, where Σs, σs0, Fs, A
are defined as before, Ps : Σs ×A→ Prob(Σs) is the transition function, and Rs : Σs ×A→ R
is the reward function. In short words, the stochastic service is the stochastic variant of the
service we defined in the preliminaries. We also define δs ⊆ Σs × A × Σs to be the transition
relation of S̃, defined as follows:

δs = {(σ, a, σ′) | P (σ′ | σ, a) > 0}

The definition of a community is the same in the non-stochastic case, i.e. a set of (stochastic)
services.
Definition 6.2. The stochastic system service Z̃ of a community C̃ of stochastic services
{S̃1, . . . , S̃n} is a stochastic service where Z̃ = 〈Σz, σz0, Fz, A, Pz, Rz〉 are defined as follows:

• Σz = Σ1 × · · · × Σn,

• σz0 = (σ10, . . . , σn0),
• Fz = {(σ1, . . . , σn) | σi ∈ Fi, 1 ≤ i ≤ n}
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• Az = A × {1, . . . n} is the set of pairs (a, i) formed by a shared action a and the index i
of the service that executes it.

• Pz(σ′ | σ, (a, i)) = P (σ′i | σi, a), for σ = (σ1 . . . σn), σ′ = (σ′1 . . . σ′n) and a ∈ Ai(σi), with
σi ∈ Σi and σj = σ′j for j 6= i.

• Rz(σ, (a, i)) = Ri(σi, a) for σ ∈ Σz, a ∈ Ai(σi).
We define the set of joint histories of the target and the system service as Ht,z = Σt×Σz× (A×
Σt × Σz)∗. A joint history ht,z = σt,0σz,0a1σt,1σz,1a2 . . . is an element of Ht,z. The projection
of ht,z over the target (system) actions is πt(ht,z) = ht (πz(ht,z) = hz). When it is clear from
the context, we drop the subscript t, z to lighten the notation.
In order to proceed, we need a notion of value over Ht,z. Crucially, since the stochasticity comes
also from the services, the orchestrator does affect the probability of an history ht,z. Note how
this is in contrast with the previous model, in which the value of a history was defined only on
target histories, whose probability was not influenced by the orchestrator. In this context, we
define the orchestrator γ:

γ : Σt × Σz ×A→ {1, . . . , n}
as a mapping from a state of the target-system service and user action (σt, σz, a) ∈ Σt×Σz ×A
to the index j ∈ {1, . . . , n} of the service that must handle it.
Differently from the previous case, the dynamics of the system is not deterministic even when
the actions selected by the user are given, because given an user action a and an assignment
by the orchestrator to service j, σj has many possible successors σ′j , where σ′j is such that
Pj(σ′j | σj , a) > 0. Therefore, in general, there are several system histories associated to a given
target history.
An orchestrator defines a partial function from target-service histories to sets of system histories,
based on the (partial) mapping from system state and action to a service and the (partial)
mapping from system state, action, and service, to the next system states. We denote this
mapping by τ̃γ . More formally, given an orchestrator γ, τ̃γ : Ht → 2Hz is defined inductively as
follows:

• τ̃γ(σt0) = {σz0}.
• Let τ̃γ(ht) = {hz1, . . . , hzn}. Let σt and σz1, . . . σzn denote the last states of the target

history and the system histories, respectively. Then, τ̃ is also defined on htaσ′t as follows:

τ̃γ(htaσ′t) = {hzkaσ′zk | hzk ∈ τ̃γ(ht), j = γ(σt, σzk, a), (σzk, 〈a, j〉, σ′zk) ∈ δz}

provided: a ∈ A(σt), σ′t ∈ δt(σt, a), j = γ(σt, σzk, a), and 〈a, j〉 ∈ A(σzk).
At this point, the definitions of realizability are analogous to the previous case:

• If τ̃γ(ht) is well defined and τ̃γ(ht) 6= ∅, we say that target history ht is realizable by the
orchestrator γ.

• The orchestrator γ is said to realize a target service Z̃ if it realizes all histories of Z̃.
The probability of a (joint) history h = σt0σz0〈a1, j1〉σt1σz1〈a2, j2〉 . . . under orchestrator γ is
given by:

Pγ(h) =
|h|∏
i=0

Pt
(
σt,i, ai+1

)
Pz
(
σz,i+1 | σz,i, 〈ai+1, γ(σt,i, σz,i, ai+1)〉)

)
(6.1)

Intuitively, at every step, we take into account the probability, determined by Pt, that the user
does action ai+1 in the target state σt,i, in conjunction with the probability, determined by
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Pz, that the system service does the transition σz,i
(ai+1,j)−−−−−→ σ′z,i+1, where j is the choice of the

orchestrator at step i under orchestrator γ, i.e. j = γ(σt,i, σz,i, ai+1).
The value of a joint history under orchestrator γ is the sum of discounted rewards, both from
the target and the system services:

vγ(h) =
|h|∑
i=0

λi
(
Rt
(
σt,i, ai+1

)
+Rz

(
σz,i, 〈ai+1, γ(σt,i, σz,i, ai+1)〉)

))
(6.2)

Intuitively, we take into account both the reward that comes from the execution of action ai+1
in the target service, but also the reward associated to the execution of that action in service j
chosen by orchestrator γ.
We can refine Equation 6.2 by considering the two components separately:

vγ(h) =
( |h|∑
i=0

λiRt(σt,i, ai+1)
)

+
( |h|∑
i=0

λiRz
(
σz,i, 〈ai+1, γ(σt,i, σz,i, ai+1)〉)

))
(6.3)

=vγ,T (h) + vγ,Z(h) (6.4)

Note that vγ,T depends only on the projected target history, whereas vγ,Z depends on the joint
target-system history.
Now we can define the expected value of an orchestrator to be:

v(γ) = Eht,z∼Pγ
[
vγ(ht,z) · realizable(γ, πt(ht,z))

]
(6.5)

where realizable(γ, πt(ht,z)) is 1 if ht = πt(ht,z) is realizable in γ, and 0 otherwise. That is,
v(γ) is the expected value of histories realizable in γ.
Similarly to Equation 6.3, thanks to the linearity of the expectation, we can separate the two
contributions to v(γ): one coming from the target’s rewards, and the one coming from the
services’ rewards:

v(γ) = Eht,z∼Pγ
[
(vγ,T (ht) + vγ,Z(ht,z)) · realizable(γ, ht)

]
(6.6)

= Eht,z∼Pγ
[
vγ,T (ht) · realizable(γ, ht)

]
+ Eht,z∼Pγ

[
vγ,Z(ht,z) · realizable(γ, ht)

]
(6.7)

= vT (γ) + vZ(γ) (6.8)

Where step 6.6 is by definition of v(γ) and step 6.7 is by linearity of the expectation. Finally,
we define an optimal orchestrator to be γ = arg maxγ′ v(γ′).
Our goal now is to find a relationship between the concept of realizability and the one of
optimality. Before proceeding, we make the following assumption, without loss of generality:
Assumption 6.1 (Non-negative rewards). Rewards are non-negative.

Assumption 6.1 can be relaxed by making sure all the rewards are non-negative by shifting
positively all the rewards by max(−Rmin, 0), where Rmin is the minimum reward across both
the target and the system service.
Intuitively, such transformation is policy-invariant, as the arg maxa operation, the operation
that computes the optimal action a to take in any state s from the action-value function Q(s, a),
is invariant with respect to a constant value. However, Assumption 6.1 will make the proofs
easier. This observation is formally proven by Lemma 6.5 (see below).
We now state other assumptions to show the relationship between realizability and optimality.
Assumption 6.2 (Target Realizability). The target is realizable.
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Assumption 6.3 (Strict positive target history values). Every target history has strictly positive
value, i.e. vγ,T (ht) > 0 for all ht.

Assumption 6.4 (Target’s rewards dominance). For any target reward rT and any service
reward rZ , we have that rT > rZ .

Intuitively, we need Assumption 6.4 because the orchestrator must never be "deceived" by the
services’ rewards; the real objective is always to maximize the expected discounted sum of
target’s rewards, and secondarily the services’ ones.
Now we prove Lemma 6.5:
Lemma 6.5. Let M = 〈S,A, T,R, γ〉 be an MDP, and let M′ = 〈S,A, T,R′, γ〉 another MDP
where R′ is defined as:

R′(s, a) = R(s, a) + c

where c ∈ R. Then, for all policies ρ onM, ρ is optimal onM iff ρ is optimal onM′

Proof. The relationship between vρ(s) and v′ρ(s) is determined by the following derivation:

vρ(s) =Eρ [Gt | St = s] (6.9)

=Eρ

[ ∞∑
k=0

γkRk+1 | St = s

]
(6.10)

=Eρ

[ ∞∑
k=0

γk
(
R′k+1 − c

)
| St = s

]
(6.11)

=Eρ

[ ∞∑
k=0

γkR′k+1 | St = s

]
− Eρ

[
c
∞∑
k=0

γk | St = s

]
(6.12)

=v′ρ(s)−
c

1− γ (6.13)

where step 6.9 is by definition of v∗(s); step 6.10 is by definition of Gt; step 6.11 is by definition
of R′(s, a); step 6.12 by the linearity of the expectation; and step 6.13 by the convergence of
the geometric sum ad infinitum.
Therefore, the partial order ρ ≥ ρ′ between two policies ρ, ρ′ is the same both onM andM′,
i.e.

vρ(s) ≥ vρ′(s)
⇐⇒

v′ρ(s)−
c

1− γ ≥ v
′
ρ′(s)−

c

1− γ
⇐⇒

v′ρ(s) ≥ v′ρ′(s)

The thesis follows by definition of optimal policy, because ρ∗ is an optimal policy for M iff
∀ρ′.ρ∗ ≥ ρ′ onM, but from the above we also have that it is true iff ∀ρ′.ρ∗ ≥ ρ′ onM′.

Therefore, we can choose c = max(−Rmin, 0) whilst preserving the same set of optimal policies
fromM with (possibly) negative rewards toM′ with non-negative rewards.



CHAPTER 6. SERVICE COMPOSITION WITH STOCHASTIC SERVICES 57

Theorem 6.6. If the target is realizable (Assumption 6.2), every history has strictly positive
value (Assumption 6.3), and the target’s rewards are always greater than services’ rewards (As-
sumption 6.4), then if γ is an optimal orchestrator, γ realizes the target.

Proof. The proof is very similar to Theorem 5.1. It is crucial to observe that all the histories
have positive value thanks to Assumption 6.1, which as stated above is without loss of generality
thanks to Lemma 6.5.
We prove the thesis by proving its contrapositive: if γ does not realize the target, then γ is not
an optimal orchestrator. Indeed, assume the orchestrator γ does not realize a target history
ht, there exists a point in ht where γ does not assign the required action to a service that
can supply it. Thus, any history that extends the corresponding prefix of ht is not realisable,
and the set of such histories has non-zero probability. Since each realized target history has a
strictly positive value, vγ,T (ht), and therefore vT (γ), would be better if γ had chosen a better
action at that point that would make ht and its extensions realizable. Note that the value
contribution from the system, i.e. vγ,Z(ht), can either increase and remain the same, in which
case we are done, or can decrease, in which case the new overall value might be lower than
before. However, to handle this case, assume we first maximize the target’s value component,
regardless of the system’s value contribution. Then the orchestrator can switch the services
with the most rewarding ones without neglecting the target’s rewards, and since we assumed
that any target’s reward is grater than any service’s reward, by assumption 6.4, this change will
always be optimal, whilst keeping γ realizing the target.

Note that the other direction of the implication does not hold, i.e. if γ realizes the target then it
is not necessarily the case that γ is an optimal orchestrator. The reason is that the orchestrator
may still realize the target but choosing among two equivalent services the less rewarding one,
whereas the optimal orchestrator would have chosen the other service.

6.2 Computing an Optimal Orchestrator
We now explain how to solve the above model by formulating an appropriate MDP.
Definition 6.3. The composition MDP is a function of the system service and the target service
as follows M̃(Z̃, T̃ ) = 〈SM̃, AM̃, TM̃, RM̃〉:

• SM̃ = ΣZ̃ × ΣT̃ ×A ∪ {sM0}

• AM̃ = {aM0, 1, . . . , n}
• TM̃(sM0, aM0, (σz0, σt0, a)) = Pt(σt0, a)
• TM̃((σz, σt, a), i, (σ′z, σ′t, a′)) = Pt(σ′t, a′) · Pz(σ′z | σz, 〈a, i〉), if Pz(σ′z | σz, 〈a, i〉) > 0 and
σt

a−→ σ′t

• RM̃((σz, σt, a), i) = Rt(σt, a) +Rz(σz, 〈a, i〉), if (a, i) ∈ A(σz) and 0 otherwise.

This definition is pretty similar to the construction proposed in (Brafman et al., 2017), with the
difference that now, in the transition function, we need to take into account also the probability
of transitioning to the system successor state σ′z from σz doing the system action 〈a, i〉, i.e.
Pz(σ′z | σz, 〈a, i〉). Moreover, in the reward function, we need to take into account also the
reward observed from doing system action 〈a, i〉 in σz, and sum it to the reward signal coming
from the target.
Theorem 6.7. Let ρ be an optimal policy for M̃(Z̃, T̃ ). Then, the orchestrator γ such that
γ(σz, σt, a) = ρ(〈σz, σt, a〉) is an optimal orchestrator.
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Proof. To see this, consider vρ(s) for any policy ρ of M̃. By definition, vρ(s) is the expected
total return starting from s and acting by following ρ. Consider the orchestrator γ associated
to π, i.e. γ(σz, σt, a) = π(〈σz, σt, a〉). We use σ̃ as a shorthand for (σz, σt, a). We have:

Vρ(σ̃) = Eh∼M̃,π

[∑
i

λiRM̃
(
σ̃i, π(σ̃i)

)]
(6.14)

= Eh∼M̃,π

[∑
i

λi
(
Rt
(
σt, a

)
+Rz

(
σz, 〈a, π(σ̃i)〉

))]
(6.15)

= Eht,z∼Pγ
[
vγ(ht,z) · realizable(γ, ht)

]
(6.16)

Where step 6.14 is by definition of V , step 6.15 is by definition of RM̃, and step 6.16 is because
from h we can recover ht,z, Pγ = T ρM̃ by construction, and target histories that are not realizable
are rewarded with 0 by construction. Since we proved that vρ = v(γ) where γ is computed from
ρ, for all ρ, we have the thesis.

6.3 Examples
According to the model describing above, we provide two different examples: the first is a very
simple one, while the second is the use cases of the thesis.

6.3.1 Ceramics Production
The example that we provide is about the process of producing ceramics, as we explain in detail
later in section 4.4. In particular we have the following services:
(a) provisioning

(b) moulding

(c) drying

(d) first_baking

(e) enamelling

(f) painting_by_robot

(g) painting_by_human

(h) second_baking

(i) shipping

We can imagine that at the end of each step we have a quality control check. The depicted
process is a linear process, while the target service have for each state a single action (with
action probability 1.0) and a unitary (or zero) reward. The complexity is then moved to the
component services. A stochastic service (for example provisioning service), remanding the
definition 6.1 can be defined as follow:

• Σs = {available}

• σs0 = {available}

• Fs = {available}

• A = {provisioning}

• Ps(available | available, provisioning) = 1.0
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• Rs(available | provisioning) = −ct
Where ct is the cost of the task execution.

Available Op, 1.0, ct

Figure 6.1. A prototype of the service’s MDP we consider to model simple services. Such services have
a single state and a self-loop transition with the Op action. The transition is associated to a cost
ci,t of performing the task.

Available

Done

Broken

Op, 1− b, ci,t

Op, b, ci,t

CheckOp, 1.0, 0

CheckOp, 1.0, ci,r

Figure 6.2. A prototype of the service’s MDP we consider to model complex services (i.e. services that
can broken). It starts from the Available state, and waits for the operation Op. b is the breaking
probability, ci,t, ci,t < 0, is the cost of completing the task t on service i, and ci,r, ci,r < 0, is the
repair cost for service i. When the action Op is executed, the system, with probability b, goes to
the Broken state, which models the case when the machine gets broken after the action execution,
and with probability 1− b goes to the Done state, which models the case when the task succeeded.
The action CheckOp is assumed to be executed by the target right after Op in order to make the
service available again, and in particular, to force the repairing in case the service is the Broken
state.

Another stochastic service (for example the moulding service) can be defined as (b is the broken
probability) :

• Σs = {available, broken, done}

• σs0 = {available}

• Fs = {available}

• A = {moulding, check_moulding}

• Ps:
– Ps(done | available,moulding) = 1− b
– Ps(broken | available,moulding) = b

– Ps(available | done, check_moulding) = 1.0
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– Ps(available | broken, check_moulding) = 1.0
• Rs:

– Rs(available,moulding) = −ct
– Rs(done, check_moulding) = 0.0
– Rs(broken, check_moulding) = −cr

Where ct is the cost of the task execution, and cr is the cost of repair.
The stochastic system service of a community of stochastic services remanding the definition
6.2 is:

• Σz = Σa × Σb × · · · × Σi

• σz0 = 〈availablea, availableb, . . . , availablei〉

• Fz = {σz0}

• A = {〈provisioning, a〉, 〈moulding, b〉, 〈check_moulding, b〉, . . . , 〈shipping, i〉}

• Pz and Rz:
– For all simple services actions ai, i = 1, . . . ,m, Pz(σ | σ, ai) = 1.0 and Rz(σ, ai) =
−ci,t, i.e., the execution remains in the same state with cost set to the cost of the
task according to the service being executed.

– For all complex services i = m, . . . , n (m < n):
∗ If action ai is of type 〈op, i〉, then Pz(σ′ | σ, ai) = 1 − b with σ =
〈σ0, . . . , σi, . . . , σn〉, σi = availablei, if σ′ = 〈σ0, . . . , donei, . . . , σn〉, else Pz(σ′ |
σ, ai) = b and σ′ = 〈σ0, . . . , brokeni, . . . , σn〉; in both cases, R(σ, ai) = ci,t;

∗ If action ai is of type 〈check_op, i〉, then Pz(σ′ | σ, ai) = 1.0 with σ =
〈σ0, . . . , σi, . . . , σn〉, σi ∈ {done, broken}, and σ′ = 〈σ0, . . . , availablei, . . . , σn〉.
Moreover, R(σ, ai) = 0 if σi = done, otherwise R(σ, ai) = −ci,r if σi = broken.

The target service, remanding the definition 5.2:
• Σt = {s0, s1, . . . , sm}, one state for each action to be done (m = 13);
• σt0 = {s0}, the initial state;
• Ft = {s0} (only the initial state is accepting)
• A = {a | a ∈ actions}
• Pt(s(i+1 mod m+1) | si, ai) = 1.0 for i = 0, . . . ,m

• Rt(si, ai) = 0.0 if i 6= m, else Rt(si, ai) = 1.0.
In Figure 6.3 you can see a picture of the target service described above.
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s0 s1 s2 . . . sn

provisioning moulding check_mouldingcheck_second_baking

shipping

Figure 6.3. The state machine of the target. Some steps are omitted.

The composition MDP is built according to Definition 6.3. An execution of the MDP looks like
as follows:

• For simple services, the orchestrator selects one among the available services according to
the cost of the task execution;

• For complex services, on the execution of the task, there is a nondeterminism due to the
breaking probability; the execution can lead either to the done state of the service with
probabiity 1-b or to the broken state of the service with probability b. By construction of
the target, the next action the orchestrator must dispatch is the check of the operation just
executed; this will make again available the previously chosen service, eventually paying
a cost due to repair in case the service was broken.

Figure 6.4 depicts the initial portion of the composition MDP.
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sdummy 〈σz, s0, provisioning〉

〈σz, s0,moulding〉

done

broken

done

broken

〈σz, s2, drying〉

. . .

adummy, 0, 1.0

a,−ca,t, 1.0
b1,−cb1,t, 1− bb1

b1,−cb1,t, bb1

b2,−cb2,t, 1− bb2

b2,−cb2,t, bb2

b1, 0, 1.0
b1,−cb1,r, 1.0

b2, 0, 1.0

b2,−cb2,r, 1.0

S̃b1

S̃b2

Figure 6.4. The initial part of an example of composition MDP for the use case. The system starts
with dispatching the provisioning request to a simple service (forced choice); then, to process the
request moulding, the orchestrator can choose between services S̃b1 and S̃b2 , taking into account the
costs cb1 , cb2 and the probability of breaking bb1 , bb2 . The execution continues after checking the
operation on the service previously chosen (a forced orchestration choice, by construction).
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Chapter 7

Solver

In this chapter we analyze the solver of stochastic service composition library and how every
component is defined. The chapter is structured as follows:

• In Section 7.1: we give a small description about the library and the tools used, providing
the github link of the project;

• In Section 7.2: we describe in detail the implementation of all services and target listing
the code and automata of both;

• In Section 7.3: we define the construction of the system service providing the algorithm;
• In Section 7.4: we define the construction of the composition MDP providing the code,

automata and the algorithm;
• In Section 7.5: we show the optimal policy calculation, listing the code and the output;

7.1 The stochastic-service-composition library
One of the core contribution of the thesis is the implementation of stochastic service composition
approach described in Chapter 6. The library, called stochastic-service-composition, is
implemented in Python 3.8, but can be used also for other Python’s version and it is available
on the following github link: https://github.com/luusi/stochastic-service-composition
We use Graphviz, an open source graph visualization software. Graph visualization is a way of
representing structural information as diagrams of abstract graphs and networks. In our case
we imagine the services and the target as automata, we use it for that representation, as we
show in the following.

7.2 Implementation of Services and Targets
In this section we describe stochastic service as defined in 6.1 and the target service as defined
in 5.2

• Every service is composed of:
a set of states, a set of actions, an initial state, a set of final states and a transition
function. The transition function is represented by nested dictionaries, where each pair
state-action corresponds to a pair in which one is the dictionary from a state to probability
(tells the probability to end up in a certain state) and the other is the reward.
The main function implemented in the service’s construction
(build_service_from_transitions) is the one that initialize a service from tran-

https://github.com/luusi/stochastic-service-composition
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sitions, initial state and final states. The set of states and the set of actions are parsed
from the transition function. This will guarantee that all the states are reachable.
Consider the use case described in 4.4 we define the various services as we show in the
following.
Provisioning and shipping services are formed by one state, with no possibility for machine
to broken, with a probability of doing the action equal to 1.0 and reward (cost) equal to
-1.0. Every other service is modelled with 3 states: available, done and broken. In the
available state it is possible to execute the operation and goes to the done state (with a
certain probability equal to “good prob”) or goes to the broken state (with prob 1 - “good
prob”).
From both done state and broken state it is possible to execute the “check operation” and
return to the available state: the difference is that the reward (or the cost) doing from
done state is zero, while the reward (or the cost) doing from broken state is much higher
(-10.0) because we have to fix the machine. So, the structure of remaining services is the
same, for this reason we create a preliminary function that built device service in almost
same way.
Also we can have multiple services that can do the same thing. For example, we can have
various versions of a machine (new or old) or the same action can be done by a human.
In our the service painting can be do by the machine or the human. Generally we can
note that a machine is more efficient than a human, but it has a certain probability of
wearing out and therefore ending up in the broken state. The human is less efficient than
a machine but he has no probability of broken.

[1]: # Python imports, put at the top for simplicity
from docs.notebooks.utils import render_service
from stochastic_service_composition.services import␣
↪→build_service_from_transitions, Service

[2]: DEFAULT_REWARD = -1.0
DEFAULT_BROKEN_REWARD = -10.0
DEFAULT_BROKEN_PROB = 0.05

#This is a preliminary function
def _build_device_service(action_name: str, broken_prob: float,␣
↪→broken_reward: float, action_reward: float):

assert 0.0 <= broken_prob <= 1.0
success_prob = 1.0 - broken_prob
transitions = {

"available": {
action_name: ({"done": success_prob, "broken": broken_prob},␣

↪→action_reward),
},
"broken": {

f"check_{action_name}": ({"available": 1.0}, broken_reward),
},
"done": {

f"check_{action_name}": ({"available": 1.0}, 0.0),
}

}
final_states = {"available"}
initial_state = "available"
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return build_service_from_transitions(transitions, initial_state,␣
↪→final_states) # type: ignore

Provisioning service:

[3]: def provisioning_service(action_reward: float = DEFAULT_REWARD) ->␣
↪→Service:

"""Build the provisioning device."""
transitions = {

"s0": {
"provisioning": ({"s0": 1.0}, action_reward),

},
}
final_states = {"s0"}
initial_state = "s0"
return build_service_from_transitions(transitions, initial_state,␣

↪→final_states) # type: ignore
service_provisioning=provisioning_service()
render_service(service_provisioning)

Moulding service:

[4]: def moulding_service(broken_prob: float = DEFAULT_BROKEN_PROB,␣
↪→broken_reward: float = DEFAULT_BROKEN_REWARD, action_reward: float =␣
↪→DEFAULT_REWARD) -> Service:

"""Build the moulding device."""
return _build_device_service("moulding", broken_prob=broken_prob,␣

↪→broken_reward=broken_reward, action_reward=action_reward)
service_moulding=moulding_service()
render_service(service_moulding)
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Drying service:

[5]: def drying_service(broken_prob: float = DEFAULT_BROKEN_PROB,␣
↪→broken_reward: float = DEFAULT_BROKEN_REWARD, action_reward: float =␣
↪→DEFAULT_REWARD) -> Service:

"""Build the drying device."""
return _build_device_service("drying", broken_prob=broken_prob,␣

↪→broken_reward=broken_reward, action_reward=action_reward)
service_drying=drying_service()
render_service(service_drying)

First baking service:

[6]: def first_baking_service(broken_prob: float = DEFAULT_BROKEN_PROB,␣
↪→broken_reward: float = DEFAULT_BROKEN_REWARD, action_reward: float =␣
↪→DEFAULT_REWARD) -> Service:

"""Build the first baking device."""
return _build_device_service("first_baking",␣

↪→broken_prob=broken_prob, broken_reward=broken_reward,␣
↪→action_reward=action_reward)

service_first_baking=first_baking_service()
render_service(service_first_baking)
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Enamelling service:

[7]: def enamelling(broken_prob: float = DEFAULT_BROKEN_PROB, broken_reward:␣
↪→float = DEFAULT_BROKEN_REWARD, action_reward: float = DEFAULT_REWARD)␣
↪→-> Service:

"""Build the enamelling device."""
return _build_device_service("enamelling", broken_prob=broken_prob,␣

↪→broken_reward=broken_reward, action_reward=action_reward)
service_enamelling=enamelling()
render_service(service_enamelling)

Painting service:

[8]: def painting_service(broken_prob: float = DEFAULT_BROKEN_PROB,␣
↪→broken_reward: float = DEFAULT_BROKEN_REWARD, action_reward: float =␣
↪→DEFAULT_REWARD) -> Service:

"""Build the painting device."""
return _build_device_service("painting", broken_prob=broken_prob,␣

↪→broken_reward=broken_reward, action_reward=action_reward)
service_painting=painting_service()
render_service(service_painting)



CHAPTER 7. SOLVER 68

Painting by human service:

[9]: def painting_human_service(action_reward: float =-5.0) -> Service:
"""Build the painting device."""
return _build_device_service("painting", broken_prob=0.0,␣

↪→broken_reward=0.0, action_reward=action_reward)
service_painting_human=painting_human_service()
render_service(service_painting_human)

Second baking service:

[10]: def second_baking_service(broken_prob: float = DEFAULT_BROKEN_PROB,␣
↪→broken_reward: float = DEFAULT_BROKEN_REWARD, action_reward: float =␣
↪→DEFAULT_REWARD) -> Service:

"""Build the second_baking device."""
return _build_device_service("second_baking",␣

↪→broken_prob=broken_prob, broken_reward=broken_reward,␣
↪→action_reward=action_reward)

service_second_baking=second_baking_service()
render_service(service_second_baking)
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Shipping service:

[11]: def shipping_service(action_reward: float = DEFAULT_REWARD) -> Service:
"""Build the shipping device."""
transitions = {

"s0": {
"shipping": ({"s0": 1.0}, action_reward),

},
}
final_states = {"s0"}
initial_state = "s0"
return build_service_from_transitions(transitions, initial_state,␣

↪→final_states) # type: ignore
service_shipping=shipping_service()
render_service(service_shipping)

• The target is composed of:
a set of states, a set of actions, an initial state, a set of final states, a transition function, a
policy and a reward. The transition function is represented by nested dictionaries, where
each pair state-action corresponds to next state. The policy is represented by nested
dictionaries, where each pair state-action corresponds to the probability associated to the
action from the state. Finally, the reward is represented by nested dictionaries, where
each pair state-action corresponds to reward associated to the action from the state.
The main function implemented in the target’s construction
(build_target_from_transitions) is the one that initialize a service from transi-
tions, initial state and final states. Also in this case, the set of states and the set of
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actions are parsed from the transition function. This will guarantee that all the states
are reachable.
Since the process of ceramics production in an industry is linear, the target service have
for each state only one action with probability equal to 1.0 and unitary reward (or cost)
equal to 0.0.

[9]: # Python imports, put at the top for simplicity
from docs.notebooks.utils import render_target
from stochastic_service_composition.target import␣
↪→build_target_from_transitions

Target service:

[10]: def target_service():
"""Build the target service."""
transition_function = {

"s0": {
"provisioning": ("s1", 1.0, 0),

},
"s1": {"moulding": ("s2", 1.0, 0),
},
"s2": {"check_moulding": ("s3", 1.0, 0),},
"s3": {"drying": ("s4", 1.0, 0), },
"s4": {"check_drying": ("s5", 1.0, 0), },
"s5": {"first_baking": ("s6", 1.0, 0), },
"s6": {"check_first_baking": ("s7", 1.0, 0), },
"s7": {"enamelling": ("s8", 1.0, 0), },
"s8": {"check_enamelling": ("s9", 1.0, 0), },
"s9": {"painting": ("s10", 1.0, 0), },
"s10": {"check_painting": ("s11", 1.0, 0), },
"s11": {"second_baking": ("s12", 1.0, 0), },
"s12": {"check_second_baking": ("s13", 1.0, 0), },
"s13": {"shipping": ("s0", 1.0, 0.0), },

}

initial_state = "s0"
final_states = {"s0"}

return build_target_from_transitions(
transition_function, initial_state, final_states

)

target = target_service()
render_target(target, engine="circo")
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To represent in terms of code the stochastic composition we proceed as follows: given a list of
service instances we build the service’s system and then given the target, the services and the
discount factor, we compose the MDP.

7.3 Build a System Service
7.3.1 Description
The system service, according to the Definition 6.2, is the combination of the set of service’s
states, the set of target’s states and the set of actions. We don’t build the explicit cartesian
product between the state spaces, as this would lead to large use of memory, due to the creation
of many unreachable states. Instead, we build it in a forward fashion, incrementally, using a
breadth-first approach which makes sure that all states are reachable. We avoid visiting the
same node twice by using a hash-table that stores the visited nodes. When we visit a node for
the first time, we proceed as follows: we check if every component of the system state (i.e. the
node being visited in this iteration), is in the final state’s set of the correspondent service; if so,
we add the system state to the set of final states.
Then, we go ahead and we do an iteration for every service to find all transitions for which the
ith service can proceed. For every outgoing transaction from the service we add all the possible
transitions to the system transitions. Since we have an asynchronous product, we enrich the
system transition with other components of the system that are stopped, while it proceeds only
the service component that we are analyzing in the "for" loop. If there is no transition out of
the current state we set the set to empty. We add other components: possible successor states
and the probability of reaching them, the other components must stand still. The algorithm
terminates until all the reachable states have been visited.
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7.3.2 Algorithm
Algorithm 7.1 contains the pseudocode of our algorithm. We build the System Service in an
incremental fashion.

Algorithm 7.1. Build system service.

1: function BuildSystemService(services)
2: NewStates ← {}
3: NewFinalStates ← {}
4: Actions ← {}
5: NewInitialState ← tuple(ServiceInitialState)
6: NewTransitionFunction ← {}
7: queue.append(NewInitialState)
8: ToBeV isited ← {NewInitialState}
9: V isited ← {}

10: while queue not empty do
11: CurrentState ← queue.pop()
12: ToBeV isited.remove(CurrentState)
13: V isited.add(CurrentState)
14: NewStates.add(CurrentState)
15: NextStateTemplate ← CurrentState
16: for i in ENUMERATE(Services) do
17: CurrentService ← Services[i]
18: CurrentServiceState ← list(NextStateTemplate)[i]
19: for a, (NextServStates,Rew) in CurServTranFun[CurServSt].items() do
20: Symbol ← (a, i)
21: Actions.add(symbol)
22: NewTransFunct.setdefault(CurrentState, {})[symbol]) ← ({}, rew)
23: for NextServiceState, prob in NextServiceStates.items()) do
24: NextStateList ← list(NextStateTemplate)
25: NextStateList[i] ← NextServiceState
26: NextState ← tuple(NextStateList)
27: NewTransitionFunction[CurrentState][Symbol][0][NextState] ← prob
28: if NextState not in V isited and NextState not in ToBeV isited then
29: ToBeV isited.add(NextState)
30: queue.append(NextState)
31: NewService← (NewStates,Actions,NewFinalStates,NewInitialState,NewTransFunction)
32: return NewService

7.4 Build the Composition MDP
The object “MDP” to which we refer is defined in a library of Standford that we use in the follow-
ing link https://github.com/coverdrive/MDP-DP-RL, we did a fork of this project available
at the following link: https://github.com/luusi/MDP-DP-RL.

7.4.1 Description
We start to define an MDP initial state, an MDP initial action and an MDP undefined action,
used when the orchestrator cannot perform the target request. For example: if we end up in a
state in which no service in the current states can consume the action of the target, then for
consistency of the MDP there is an undefined action that makes the execution remain in the
same state with probability 1.0.

https://github.com/coverdrive/MDP-DP-RL
https://github.com/luusi/MDP-DP-RL
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The construction of the composition MDP is performed in a forward fashion, for similar reasons
of the system service construction. To begin with, we initialize the initial transitions, i.e. the
ones that start from the dummy state s0 and with the dummy action a0 nondeterministically
lead to a set of states, according to the first action choice of the target. These new states will
be the next state to be visited. For all actions that the target can perform in the initial state
we have the state formed by system state, target state and the request action (in this way we
populate also queue). At each iteration, a state is visited and we add an orchestrator action for
each action that the system service can do. Then, the construction proceeds straightforwardly
according to Definition 6.3 and the data structures defined above.
The state without outgoing transitions are sink states, so if the number of the transition is
0 we add an auxiliary transition with action “undefined" which leads to the same state with
probability 1. The algorithm terminates until all the reachable states have been visited.

[3]: # Python imports, put at the top for simplicity
from docs.notebooks.utils import render_composition_mdp,␣
↪→service_provisioning, service_moulding, target

from stochastic_service_composition.composition import composition_mdp

[4]: all_services = [
service_provisioning,
service_moulding

]

mdp = composition_mdp(target, *all_services, gamma=0.9)
render_composition_mdp(mdp)

The figure above shows a small portion of the MDP composition with two services, due to lack
of space.

7.4.2 Algorithm
Algorithm 7.2 contains the pseudocode of our algorithm. We build the System Service in an
incremental fashion.
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Algorithm 7.2. Build composition MDP.

1: function CompositionMDP(target, services, gamma)
2: SystemService ← BuildSystemService(services)
3: InitialState ← 0
4: Actions ← {ENUMERATE(services)}
5: InitialAction ← ”initial”
6: Actions.add(InitialAction)
7: ToBeV isited ← {}
8: V isited ← {}
9: TransitionFunction[InitialState] ← {}

10: InitialTransitionDist ← {}
11: SymbolsFromInitialState ← target.policy[target.InitialState].keys()
12: for Symbol in SymbolsFromInitialState do
13: NextState ← (SystemService.InitialState, target.InitialState, Symbol)
14: NextProb ← target.policy[target.InitialState][Symbol]
15: InitialTransitionDist[NextState] ← NextProb
16: queue.append(NextState)
17: TransitionFunction[InitialState][InitialAction] ← (InitialTransitionDist, 0.0)
18: while queue not empty do
19: CurrentState ← queue.pop()
20: ToBeV isited.remove(CurrentState)
21: V isited.add(CurrentState)
22: CurrentSystemState, CurrentTargetSate, CurrentSymbol ← CurrentState
23: TransitionFunction[CurrentState] ← {}
24: SystemSymbols← list(SystemService.T ransitionFunction[CurrentSystemState].keys()
25: SystemSymbolsBySymbols ← {}
26: for Action, ServiceId in SystemSymbols do
27: SystemSymbolsBySymbols.setdefault(Action, set()).add(ServiceId)
28: for i in SystemSymbolsBySymbols.get(CurrentSymbol, set()) do
29: NextTransitions ← {}
30: NextReward ← target.reward[CurrentTargetState][CurrentSymbol]
31: if (CurrentSymbol, i) in SysService.T ransFunction[CurrentSysState] then
32: else0
33: NextTargetState← target.T ransitionFunction[CurrentTargetState][CurrentSymbol]
34: NextSysState,NextSysRew← SysService.T ransFun[CurrSysState][(CurrSymbol, i)]
35: for NextSym,NextProb in target.policy[NextTargState].items()) do
36: for NextSysState,NextSysProb in NextSysState.items()) do
37: NextState ← (NextSystemState,NextTargetState,NextSymbol)
38: if (NextProb ∗NextSysProb) == 0 then
39: continue
40: NextTransitions[NextState] ← NextProb ∗NextSystemProb
41: if (NextState) not in V isitedandNextState not in ToBeV isited then
42: ToBeVisited.add(NextState)
43: queue.append(NextState)
44: TransitionFunction[CurrentState][i]← (NextTrans,NextRew +NextSysRew)
45: if len(TransFunc[CurrentState]) ==0.0 then
46: TransitionFunction.setDefault(CurrentState, {}
47: TransFunction[CurrentState], [”undefined”] ← {(CurrentState : 1.0}, 0.0)
48: return MDP (TransitionFunction, gamma)
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7.5 Optimal Policy
In this section we show every step of optimal policy calculation, also for implement this part
we refer to the library MDP-RL-DP as defined before in 7.4.

[11]: # Python imports, put at the top for simplicity
from mdp_dp_rl.algorithms.dp.dp_analytic import DPAnalytic
from docs.notebooks.utils import print_policy_data, print_value_function,␣
↪→print_q_value_function, target, \

service_provisioning, service_moulding, service_drying,␣
↪→service_first_baking, service_enamelling, service_painting, \

service_painting_human, service_second_baking, service_shipping
from stochastic_service_composition.composition import composition_mdp

[12]: all_services = [
service_provisioning,
service_moulding,
service_drying,
service_first_baking,
service_enamelling,
service_painting,
service_painting_human,
service_second_baking,
service_shipping,

]

mdp = composition_mdp(target, *all_services, gamma=0.9)

opn = DPAnalytic(mdp, 1e-4)
opt_policy = opn.get_optimal_policy_vi()
value_function = opn.get_value_func_dict(opt_policy)
q_value_function = opn.get_act_value_func_dict(opt_policy)

# remove '0' state to sort output
opt_policy.policy_data.pop(0, None)
value_function.pop(0, None)
_ = q_value_function.pop(0, None)

[13]: print_policy_data(opt_policy)

Policy:
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's0', 'provisioning'), Action=0
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's1', 'moulding'), Action=1
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's11', 'second_baking'), Action=7
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's13', 'shipping'), Action=8
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's3', 'drying'), Action=2
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's5', 'first_baking'), Action=3
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State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's7', 'enamelling'), Action=4
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's9', 'painting'), Action=5
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'broken', 's0'), 's12', 'check_second_baking'), Action=7
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'done', 's0'), 's12', 'check_second_baking'), Action=7
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'done', 'available', 's0'), 's10', 'check_painting'), Action=6
State=(('s0', 'available', 'available', 'available', 'available', 'broken',
'available', 'available', 's0'), 's10', 'check_painting'), Action=5
State=(('s0', 'available', 'available', 'available', 'available', 'done',
'available', 'available', 's0'), 's10', 'check_painting'), Action=5
State=(('s0', 'available', 'available', 'available', 'broken', 'available',
'available', 'available', 's0'), 's8', 'check_enamelling'), Action=4
State=(('s0', 'available', 'available', 'available', 'done', 'available',
'available', 'available', 's0'), 's8', 'check_enamelling'), Action=4
State=(('s0', 'available', 'available', 'broken', 'available', 'available',
'available', 'available', 's0'), 's6', 'check_first_baking'), Action=3
State=(('s0', 'available', 'available', 'done', 'available', 'available',
'available', 'available', 's0'), 's6', 'check_first_baking'), Action=3
State=(('s0', 'available', 'broken', 'available', 'available', 'available',
'available', 'available', 's0'), 's4', 'check_drying'), Action=2
State=(('s0', 'available', 'done', 'available', 'available', 'available',
'available', 'available', 's0'), 's4', 'check_drying'), Action=2
State=(('s0', 'broken', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's2', 'check_moulding'), Action=1
State=(('s0', 'done', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's2', 'check_moulding'), Action=1

[14]: print_value_function(value_function)

Value function:
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's0', 'provisioning'),
value=-8.016734337200308
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's1', 'moulding'),
value=-7.796371485778121
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's11', 'second_baking'),
value=-8.104199331819025
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's13', 'shipping'),
value=-8.215060903480278
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's3', 'drying'), value=-7.835026525652
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's5', 'first_baking'),
value=-7.882748797101234
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's7', 'enamelling'),
value=-7.941665181606463
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State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's9', 'painting'),
value=-8.014401458773412
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'broken', 's0'), 's12', 'check_second_baking'),
value=-17.39355481313225
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'done', 's0'), 's12', 'check_second_baking'),
value=-7.39355481313225
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'done', 'available', 's0'), 's10', 'check_painting'),
value=-7.293779398637123
State=(('s0', 'available', 'available', 'available', 'available', 'broken',
'available', 'available', 's0'), 's10', 'check_painting'),
value=-17.29377939863712
State=(('s0', 'available', 'available', 'available', 'available', 'done',
'available', 'available', 's0'), 's10', 'check_painting'),
value=-7.293779398637123
State=(('s0', 'available', 'available', 'available', 'broken', 'available',
'available', 'available', 's0'), 's8', 'check_enamelling'),
value=-17.21296131289607
State=(('s0', 'available', 'available', 'available', 'done', 'available',
'available', 'available', 's0'), 's8', 'check_enamelling'),
value=-7.21296131289607
State=(('s0', 'available', 'available', 'broken', 'available', 'available',
'available', 'available', 's0'), 's6', 'check_first_baking'),
value=-17.147498663445816
State=(('s0', 'available', 'available', 'done', 'available', 'available',
'available', 'available', 's0'), 's6', 'check_first_baking'),
value=-7.147498663445816
State=(('s0', 'available', 'broken', 'available', 'available', 'available',
'available', 'available', 's0'), 's4', 'check_drying'),
value=-17.09447391739111
State=(('s0', 'available', 'done', 'available', 'available', 'available',
'available', 'available', 's0'), 's4', 'check_drying'),
value=-7.09447391739111
State=(('s0', 'broken', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's2', 'check_moulding'),
value=-17.0515238730868
State=(('s0', 'done', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's2', 'check_moulding'),
value=-7.051523873086801

[15]: print_q_value_function(q_value_function)

Q-value function:
State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's0', 'provisioning'):

Action=0, Value=-8.016734337200308

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's1', 'moulding'):

Action=1, Value=-7.796371485778121
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State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's11', 'second_baking'):

Action=7, Value=-8.104199331819025

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's13', 'shipping'):

Action=8, Value=-8.215060903480278

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's3', 'drying'):

Action=2, Value=-7.835026525651999

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's5', 'first_baking'):

Action=3, Value=-7.882748797101234

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's7', 'enamelling'):

Action=4, Value=-7.941665181606463

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's9', 'painting'):

Action=5, Value=-8.01440145877341
Action=6, Value=-11.56440145877341

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'broken', 's0'), 's12', 'check_second_baking'):

Action=7, Value=-17.39355481313225

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'available', 'done', 's0'), 's12', 'check_second_baking'):

Action=7, Value=-7.39355481313225

State=(('s0', 'available', 'available', 'available', 'available', 'available',
'done', 'available', 's0'), 's10', 'check_painting'):

Action=6, Value=-7.293779398637123

State=(('s0', 'available', 'available', 'available', 'available', 'broken',
'available', 'available', 's0'), 's10', 'check_painting'):

Action=5, Value=-17.293779398637124

State=(('s0', 'available', 'available', 'available', 'available', 'done',
'available', 'available', 's0'), 's10', 'check_painting'):

Action=5, Value=-7.293779398637123

State=(('s0', 'available', 'available', 'available', 'broken', 'available',
'available', 'available', 's0'), 's8', 'check_enamelling'):

Action=4, Value=-17.21296131289607

State=(('s0', 'available', 'available', 'available', 'done', 'available',
'available', 'available', 's0'), 's8', 'check_enamelling'):

Action=4, Value=-7.212961312896071

State=(('s0', 'available', 'available', 'broken', 'available', 'available',
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'available', 'available', 's0'), 's6', 'check_first_baking'):
Action=3, Value=-17.147498663445816

State=(('s0', 'available', 'available', 'done', 'available', 'available',
'available', 'available', 's0'), 's6', 'check_first_baking'):

Action=3, Value=-7.147498663445816

State=(('s0', 'available', 'broken', 'available', 'available', 'available',
'available', 'available', 's0'), 's4', 'check_drying'):

Action=2, Value=-17.094473917391113

State=(('s0', 'available', 'done', 'available', 'available', 'available',
'available', 'available', 's0'), 's4', 'check_drying'):

Action=2, Value=-7.094473917391111

State=(('s0', 'broken', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's2', 'check_moulding'):

Action=1, Value=-17.0515238730868

State=(('s0', 'done', 'available', 'available', 'available', 'available',
'available', 'available', 's0'), 's2', 'check_moulding'):

Action=1, Value=-7.051523873086801

In the calculation of the q-value function it is interesting to note, when the painting service is
called (which can be performed by a robot or a human) that the value when the robot performs
the action is less than the value when the human performs the action. This perfectly reflects
the fact that the robot is more efficient than the human. Obviously if the machine begins to
have significant wear and is more likely to break (and also it has an high cost to be repaired),
these values will change and it will be more convenient for the human to perform the action,
who in this case, even being slower, has no risk of breaking and no cost to be repaired.
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Chapter 8

Technological Solution based on
Digital Twins

In this chapter, we describe an application of the model introduced in Chapter 6 in an Industry
4.0 scenario. In particular, the application will involve the orchestration of several Digital Twins
to accomplish the creation of a product through the assembly line. The chapter is structured
as follows:

• In Section 8.1: we describe the architecture of the project, listing the most important
components between Bosch IoT Things and the system and how are managed the connec-
tion betweens them;

• In Section 8.2: we explain how we define services in Bosch IoT Things platform;
• In Section 8.3: we explain how we define the target in Bosch IoT Things platform;
• In Section 8.4: we talk about the workflow of the project and how target, services and

orchestrator communicates between them.

8.1 High-level Architecture
8.1.1 Overview
The main architecture components are:

• Bosch IoT Things, which provides the API for interacting with the Digital Twins and
the actual devices;

• Bosch IoT Hub, which allows the devices to securely communicate in a wide range of
protocols:
– It receives the messages from the devices and it forwards them to Bosch IoT Things;
– It receives the messages from Bosch IoT Things and it forwards them to the appro-

priate devices.
• The devices (both the services and the target) are connected with Bosch IoT Hub via

MQTT only. The connection between Bosch IoT Hub and Bosch IoT Thing usesAMQP
1.0 (Advanced Message Queuing Protocol) that is a frame and transfer protocol that al-
lows messages to be transferred between two parties asynchronously, securely and reliably.
It is the main protocol of Hub event messaging.

• The Orchestrator process, that:
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– Collects the Digital Twin descriptions and their current values;
– Invokes the composition of MDP and the optimal policy calculation;
– Depending on the target’s actions, dispatches the request to the service that has to

perform the action according to the optimal policy; it then updates the current state
and goes on.

The Orchestrator communicates with Bosch IoT Things through WebSocket communica-
tion.

Figure 8.1 depicts a diagram of the architecture.

Figure 8.1. Software Architecture

8.1.2 MQTT
The connection uses between services, target and Bosch IoT Hub is MQTT only, because
provides:

• publish/subscribe at the protocol level,
• quality of service: it is for small band communication channels and a restricted number

of devices,
• a limited overhead.

For managing this protocol we create an abstract class where first, we define all parameters for
representing a Thing:

• device_id: the ID of tenant,
• tenant_id: the ID of tenant,
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• hub_adapter_host: MQTT IoT Hub,
• certificate_path: path to IoT Hub certificate,
• device_password: the secret that registered with the credential,
• client_id: MQTT client,
• authentication_id: the ID of the credential,
• ditto_topics

Then, we establish a connection with MQTT client that is subscribed to the Bosch IoT Hub
and it is ready to receive commands. After this services receive the message and the command
from the Orchestrator, execute it and update current state. The target, instead receive message
from Orchestrator, sample the next action and send it to Orchestrator.

8.1.3 WebSocket
WebSocket is designed for point to point connections that mainly works in an environment that
support publish/subscribe architectures. In this case permits the communication between the
Orchestrator and Bosch IoT Hub.
The Orchestrator, after collecting Digital Twins description connects to the Bosch IoT Thing
Websocket endpoint, composing MDP, calculate optimal policy and issues a command to request
events related to the Things:

START-SEND-EVENTS

The term "event" refers to any state change of the Digital Twin. After this the Orchestrator
listen to the event originating, so it waits for target action, once it receives send the action
to the right service and again he waits from the service the update state after performing the
action, as we will explain in detail later in 8.4.3.

8.1.4 ThingAPI
The Things defined in Bosch IoT Things interact through HTTP API 2. We determine following
API call:

• get_thing: returns all things passed in by the required parameter ids, which you (the
authorized subject) are allowed to read.
We use this API call when we have to launch devices and we have to distinguish between
services and target;

• search_things: used to search for things. The query parameter filter if it is not set, the
result contains all things which the logged in user is allowed to read. If we set:
– search_services: search things with type=service (setting "fil-

ter=eq(attributes/type,’service’)")).
We use this API call when we download the JSON description of the services from
the platform;

– search_targets: search things with type=target (setting "fil-
ter=eq(attributes/type,’target’)")).
We use this API call when we download the JSON description of the target from the
platform.
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• send_message_to_thing: send a message to a specific thing.
We use this API call when the Orchestrator has to send message to the chosen service
Thing about the action to perform and also when it has to send the ack that the action
is done to the target Thing;

• receive_message_from_thing: send a message from a specific thing
• change_property: create or update a specific property of a feature identified by the

thingId and featureId path parameter.

8.2 Services as Digital Twins
Every service is implemented as Thing with JSON description language. Each Digital Twin is
composed by:

• thingId: the ID of the Thing;
• policyId: the ID of the policy (3.4.2). In our case this parameter is not important, but

it is created by default with the Thing.
• attributes: the type that represents whether the Thing is a service, the transitions, the

initial state and the set of final states of the services, according to the definition proposed
in 7.2;

• features: the current state that change every time the Thing performs an action and
goes to the new state

Figure 8.2 shows the JSON description of the provisioning service of our use case, that has a
single state and no possibility to broken. So, since we have only one action we assign to the
transition the probability of 1.0 and since the reward represents the cost of doing an action, we
assign a negative reward of -1.0.
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Figure 8.2. Provisioning service Thing

Let’s see how the definition of a service that can be broken changes. Figure 8.3 shows the JSON
description of the moulding service of our use case. When we perform the action here, we have
a chance that the machine will do everything right or it may break down. The probability of
success is defined as (1 - the probability of a machine breaking). If the machine ends up in a
broken state, it can be repaired and returned to the available state, but this is expensive in
terms of cost (reward), which is -10. On the other hand, if the action is successful and goes in
the done state, the machine will check the correctness of the action and return to the available
state with a cost (reward) of 0.
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Figure 8.3. Moulding service Thing
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8.3 Target as Digital Twin
Also the target is implemented as Thing with JSON description language. It is composed by:

• thingId: the target identifier;
• attributes: the type that represents whether the Thing is a target, the transitions, the

initial state and the set of final states of the target, according to the definition proposed
in 7.2;

• features: the current action, that change every time the target perform an action, de-
pending on the choice of the user.

Figure 8.4 shows a JSON description portion of the target of our use case. The depicted
process is linear, thus we can imagine the target service having for each state a single action
(with action probability 1.0) and a unitary (or zero) reward. It might seem that there are not
many differences compared to the service definitions, but what changes are the mapping of the
transition function and that in features, we define the current action that can undergo variation
according to the user’s choice.
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Figure 8.4. Target service Thing

8.4 Workflow and Communication Details
8.4.1 Target and Orchestrator
The first communication that is established in our system is between the Target and the Or-
chestrator. The Target is the core of the execution, it is considered as real service and it decides
the action to do, in particular decides the actions that the user wants to do and sends them
to the Orchestrator. The protocol starts with the request from the target of the action to the
orchestrator; after this he waits from it the ack that the action is done. The orchestrator waits
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until the target send him the action and decides (according to the optimal policy) to which
service the action can be done. Once the action is done, what the orchestrator do is update the
current state of the MDP and send a message to the target that the action is done. Once the
target receives this ack can perform the next action and goes on. All this steps are pictured in
Figure 8.5:

Figure 8.5. Communication between Target and Orchestrator

8.4.2 Orchestrator and Services
As much important is the role of the Orchestrator, which has the task of forwarding the action
that the target wants to do to the correct service that can perform it. Until it receives the
action from the target, it waits for it, then once it receives, according to the optimal policy
calculated choose the right service and send the action to it. The service does the action and
notifies the state in which it is. At this point, the Orchestrator update the current state of
MDP and send an ack to the Target that the action is done. In Figure 8.6 we show a sketch of
this communication
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Figure 8.6. Communication between Orchestrator and Services
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8.4.3 Target, Orchestrator and Services
The communication between all components of the system is depicted in Figure 8.7 and is
divided in several steps.

Figure 8.7. Communication between Target, Orchestrator and Services. Note that all the communica-
tions happen through the Bosch IoT Hub platform.

Every Digital Twin that represents the services and the target lives in its process. The avail-
able services are dedicated only to this orchestration, they don’t talk between them and the
communication starts from target to the service, through the Orchestrator, but not vice versa.
The transitions of services and target are download by their Thing JSON description. Once
having this, the Orchestrator connects to the Bosch IoT Thing Websocket endpoint, invoke the
composition of MDP and the calculation of optimal policy as explained in 7.4, invoke the target
simulator that defines the current state of the target and updates the state given an action, and
starts from the initial state of system state as explained in Ȧfter that the Orchestrator issues
a command to request events related to things and listen to events originating. Now start the
iterations and the communication between Target and Orchestrator as described in detail in
8.4.1, in particular the target action is taken from the JSON description file, the current state
and the updating of the state from target simulator. Now the current state of the MDP is
formed by system state, current target state and target action, at this point the Orchestrator
calculates the optimal policy and begin the communication between Orchestrator and Services
as described in detail in 8.4.2 and he goes on for every iteration.
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8.4.4 Special case
Let’s see what happen when the action request by the target cannot be dispatched, following
Figure 8.8. As seen, the target requires an action that he needs, but no service at that moment
may be in the conditions, for example in the right state, to be able to process that request.
We assume that the orchestrator is always updated on the final status of the services. If the
orchestrator cannot delegate the action to the service, it replies to the target that the action
required cannot be done. On the other hand if the request of the target can be dispatched all
the system behave as 8.4.3.

Figure 8.8. Communication between Target, Orchestrator and Services when target action cannot be
dispatched
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Chapter 9

Proof-of-Concept Implementation

In this chapter we show the proof-of-concept of our use case. The chapter is structured as
follows:

• In Section 9.1: we illustrate DT implementation of the services and target on Bosch IoT
Things, providing the relative automata;

• In Section 9.2: we describe in detail the main function of the project, showing the code;
• In Section 9.3: we describe the code of launching devices;
• In Section 9.4: we show the execution of the framework, describing how component

communicates between theim.

9.1 Bosch IoT Things DT Implementation
The communication between the orchestrator and the devices takes place through Bosch Iot
Things and Bosch Iot Hub, as we showed before in Section 8.1 and in Figure 8.1. The devices
are defined in Bosch Iot Things as Digital Twins. Once we connect on the platform we can
request the action to a service; every time that the service performs an action the current
state is updated to the next state (the value of this variable change whenever is performed an
operation). In the following we show the set of services remanding the structure in 8.2:
Provisioning DT:
{

" th ingId " : "com . bosch . s e r v i c e : p r ov i s i on i ng_s e rv i c e " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : p r ov i s i on i ng_s e rv i c e " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" p r ov i s i on i ng " : [

{
" a v a i l a b l e " : 1

} ,
−1

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
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" f i n a l_ s t a t e s " : [
" a v a i l a b l e "

]
} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The provisioning DT corresponds to the automata shows in Figure 9.1:

Available Provisioning, 1.0,−1.0

Figure 9.1. Provisioning automata.

Moulding DT:
{

" th ingId " : "com . bosch . s e r v i c e : moulding_service " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : moulding_service " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" moulding " : [

{
" done " : 0 . 95 ,
" broken " : 0 .05

} ,
−1

]
} ,
" broken " : {

" check_moulding " : [
{

" a v a i l a b l e " : 1
} ,
−10

]
} ,
" done " : {

" check_moulding " : [
{

" a v a i l a b l e " : 1
} ,
0
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]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " done "
}

}
}

}−

The moulding DT corresponds to the automata shows in Figure 9.2:

Available

Done

Broken

Moulding, 0.95,−1.0

Moulding, 0.05,−1.0

CheckMoulding, 1.0, 0

CheckMoulding, 1.0,−10.0

Figure 9.2. Moulding automata.

Drying DT:
{

" th ingId " : "com . bosch . s e r v i c e : d ry ing_serv i ce " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : d ry ing_serv i ce " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" dry ing " : [

{
" done " : 0 . 95 ,
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" broken " : 0 .05
} ,
−1

]
} ,
" broken " : {

" check_drying " : [
{

" a v a i l a b l e " : 1
} ,
−10

]
} ,
" done " : {

" check_drying " : [
{

" a v a i l a b l e " : 1
} ,
0

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The drying DT corresponds to the automata shows in Figure 9.3:
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Available

Done

Broken

Drying, 0.95,−1.0

Drying, 0.05,−1.0

CheckDrying, 1.0, 0

CheckDrying, 1.0,−10.0

Figure 9.3. Drying automata.

First-baking DT:
{

" th ingId " : "com . bosch . s e r v i c e : f i r s t_bak ing_se rv i c e " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : f i r s t_bak ing_se rv i c e " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" f i r s t_bak ing " : [

{
" done " : 0 . 95 ,
" broken " : 0 .05

} ,
−1

]
} ,
" broken " : {

" check_f i rs t_baking " : [
{

" a v a i l a b l e " : 1
} ,
−10

]
} ,
" done " : {

" check_f i rs t_baking " : [
{

" a v a i l a b l e " : 1
} ,
0



CHAPTER 9. PROOF-OF-CONCEPT IMPLEMENTATION 97

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The first-baking DT corresponds to the automata shows in Figure 9.4:

Available

Done

Broken

FirstBaking, 0.95,−1.0

FirstBaking, 0.05,−1.0

CheckFirstBaking, 1.0, 0

CheckFirstBaking, 1.0,−10.0

Figure 9.4. First-baking automata.

Enamelling DT:
{

" th ingId " : "com . bosch . s e r v i c e : ename l l ing_se rv i c e " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : ename l l ing_serv i c e " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" enamel l ing " : [

{
" done " : 0 . 95 ,
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" broken " : 0 .05
} ,
−1

]
} ,
" broken " : {

" check_enamell ing " : [
{

" a v a i l a b l e " : 1
} ,
−10

]
} ,
" done " : {

" check_enamell ing " : [
{

" a v a i l a b l e " : 1
} ,
0

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The enamelling DT corresponds to the automata shows in Figure 9.5:
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Available

Done

Broken

Enamelling, 0.95,−1.0

Enamelling, 0.05,−1.0

CheckEnamelling, 1.0, 0

CheckEnamelling, 1.0,−10.0

Figure 9.5. Enamelling automata.

Painting DT:
{

" th ingId " : "com . bosch . s e r v i c e : pa in t ing_se rv i c e " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : pa in t ing_se rv i c e " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" pa in t ing " : [

{
" done " : 0 . 95 ,
" broken " : 0 .05

} ,
−1

]
} ,
" broken " : {

" check_paint ing " : [
{

" a v a i l a b l e " : 1
} ,
−10

]
} ,
" done " : {

" check_paint ing " : [
{

" a v a i l a b l e " : 1
} ,
0
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]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The painting DT corresponds to the automata shows in Figure 9.6:

Available

Done

Broken

Painting, 0.95,−1.0

Painting, 0.05,−1.0

CheckPainting, 1.0, 0

CheckPainting, 1.0,−10.0

Figure 9.6. Painting automata.

Painting by Human DT:
{

" th ingId " : "com . bosch . s e r v i c e : painting_by_human_service " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : painting_by_human_service " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" pa in t ing " : [

{
" done " : 1 ,
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" broken " : 0
} ,
−5

]
} ,
" broken " : {

" check_paint ing " : [
{

" a v a i l a b l e " : 1
} ,
0

]
} ,
" done " : {

" check_paint ing " : [
{

" a v a i l a b l e " : 1
} ,
0

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The painting-by-human DT corresponds to the automata shows in Figure 9.7:

Available Done

Painting, 1.0,−5.0

CheckPainting, 1.0, 0

Figure 9.7. Painting-by-human automata.

Note that we have modelled the human service as a complex service with broken probability of
0.0.
Second Baking DT:
{
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" th ingId " : "com . bosch . s e r v i c e : second_baking_service " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : second_baking_service " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" second_baking " : [

{
" done " : 0 . 95 ,
" broken " : 0 .05

} ,
−1

]
} ,
" broken " : {

" check_second_baking " : [
{

" a v a i l a b l e " : 1
} ,
−10

]
} ,
" done " : {

" check_second_baking " : [
{

" a v a i l a b l e " : 1
} ,
0

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}

The second-baking DT corresponds to the automata shows in Figure 9.8:
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Available

Done

Broken

SecondBaking, 0.95,−1.0

SecondBaking, 0.05,−1.0

CheckSecondBaking, 1.0, 0

CheckSecondBaking, 1.0,−10.0

Figure 9.8. Second-baking automata.

Shipping DT:
{

" th ingId " : "com . bosch . s e r v i c e : sh ipp ing_se rv i c e " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : sh ipp ing_se rv i c e " ,
" a t t r i b u t e s " : {

" type " : " s e r v i c e " ,
" t r a n s i t i o n s " : {

" a v a i l a b l e " : {
" sh ipp ing " : [

{
" a v a i l a b l e " : 1

} ,
−1

]
}

} ,
" i n i t i a l _ s t a t e " : " a v a i l a b l e " ,
" f i n a l_ s t a t e s " : [

" a v a i l a b l e "
]

} ,
" f e a t u r e s " : {

" cur rent_state " : {
" p r op e r t i e s " : {

" va lue " : " a v a i l a b l e "
}

}
}

}
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The shipping DT corresponds to the automata shows in Figure 9.9:

Available Shipping, 1.0,−1.0

Figure 9.9. Shipping automata.

The target is defined as a Digital Twins too in Bosch Iot Things, reminding the structure
illustrated in 8.3. Every time that the target asks an action to the orchestrator and this action
is correctly performed, it updates the value of the current action, moving to the next request.
{

" th ingId " : "com . bosch . s e r v i c e : t a r g e t " ,
" p o l i c y I d " : "com . bosch . s e r v i c e : t a r g e t " ,
" a t t r i b u t e s " : {

" type " : " t a r g e t " ,
" t r a n s i t i o n s " : {

" s0 " : {
" p r ov i s i on i ng " : [

" s1 " ,
1 ,
0

]
} ,
" s1 " : {

" moulding " : [
" s2 " ,
1 ,
0

]
} ,
" s2 " : {

" check_moulding " : [
" s3 " ,
1 ,
0

]
} ,
" s3 " : {

" dry ing " : [
" s4 " ,
1 ,
0

]
} ,
" s4 " : {

" check_drying " : [
" s5 " ,
1 ,
0

]
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} ,
" s5 " : {

" f i r s t_bak ing " : [
" s6 " ,
1 ,
0

]
} ,
" s6 " : {

" check_f i rs t_baking " : [
" s7 " ,
1 ,
0

]
} ,
" s7 " : {

" enamel l ing " : [
" s8 " ,
1 ,
0

]
} ,
" s8 " : {

" check_enamell ing " : [
" s9 " ,
1 ,
0

]
} ,
" s9 " : {

" pa in t ing " : [
" s10 " ,
1 ,
0

]
} ,
" s10 " : {

" check_paint ing " : [
" s11 " ,
1 ,
0

]
} ,
" s11 " : {

" second_baking " : [
" s12 " ,
1 ,
0

]
} ,
" s12 " : {

" check_second_baking " : [
" s13 " ,
1 ,
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0
]

} ,
" s13 " : {

" sh ipp ing " : [
" s0 " ,
1 ,
1

]
}

} ,
" i n i t i a l _ s t a t e " : " s0 " ,
" f i n a l_ s t a t e s " : [

" s0 "
]

} ,
" f e a t u r e s " : {

" current_act ion " : {
" p r op e r t i e s " : {

" va lue " : " moulding "
}

}
}

}

The target DT corresponds to the automata shows in Figure 9.10:
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s0 s1 s2 s3

s4 s5 s6 s7

s10s9s8

s11 s12 s13

provisioning, 1, 0 moulding, 1, 0 check_moulding, 1, 0

drying, 1, 0

check_drying, 1, 0

first_baking, 1, 0 check_first_baking, 1, 0

enamelling, 1, 0

check_enamelling, 1, 0

painting, 1, 0

check_painting, 1, 0

second_baking, 1, 0 check_second_baking, 1, 0

shipping, 1, 1

Figure 9.10. The state machine of the target.

9.2 Main
In the main is defined the core structure of the project: the orchestration between the Digital
Twins, in particular between services and target.
In the first part of the main we download the JSON description of the services and the target,
we can do this by searching the things defined on Bosch Iot Things thanks to the API call
“search”, as we illustrate in subsection 8.1.4.

async de f main ( c on f i g : s t r , t imeout : i n t ) :
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" " "Run the main . " " "
s e r v i c e s = [ ]
s e r v i c e_ id s = [ ]
c on f i gu r a t i on = config_from_json (Path ( c on f i g ) )
api = ThingsAPI ( c on f i gu r a t i on )
data = api . s e a r ch_se rv i c e s ( " " )
f o r element in data :

s e r v i c e = service_from_json ( element )
s e r v i c e s . append ( s e r v i c e )

s e r v i c e_ id s . append ( element [ " th ingId " ] )

data = api . s ea rch_targe t s ( " " )
a s s e r t l en ( data ) == 1
ta rg e t : Target = target_from_json ( data [ 0 ] )
target_thing_id = data [ 0 ] [ " th ingId " ]

Then, we compose the MDP as illustrated in 7.4 and we calculate the optimal policy as explained
in 7.5

mdp: MDP = composition_mdp ( target , ∗ s e r v i c e s )
o r che s t r a t o r_po l i cy = mdp. get_optimal_pol icy ( )

After this we establish the connection with Websocket endpoint, the Orchestrator starts to send
events to Bosch Iot Things platform, waits for the “ACK” from the platform, if the “ACK” is
not received it raises an exception.
p r i n t ( " Opening websocket endpoint . . . " )

ws_uri = " wss : // th ing s . eu−1.bosch−i o t−s u i t e . com/ws/2"
async with websockets . connect (ws_uri ,

extra_headers=websockets . http . Headers ({
' Author izat ion ' : ' Bearer ' + api . get_token ( )

} ) ) as websocket :
p r i n t ( " Co l l e c t i n g problem data . . . " )

event_cmd = "START−SEND−EVENTS"
pr in t ( "EVENT_CMD: " , event_cmd )
event_cmd = u r l l i b . parse . quote ( event_cmd , s a f e = ' ')
await websocket . send ( event_cmd )
pr in t ( " L i s t en ing to events o r i g i n a t i n g " )
message_rece ive = await websocket . recv ( )
p r i n t ( " Message r e c e i v ed : " , message_rece ive )
i f message_rece ive != "START−SEND−EVENTS:ACK" :

r a i s e Exception ( "Ack not r e c e i v ed " )

From this point the target state is updated and is taken the initial state of the system. The
Orchestrator waits from the target action, that tells him the action that the user wants. The
user choose the action following the optimal policy (that minimize the cost). Once the target
asks for the action it waits for a message from the orchestrator that the action is done. The
orchestrator is always updated to the current state of the services, so if it cannot dispatch the
action to a service the execution failed. Now the Orchestrator can send the action to the right
Thing that can perform it through the API call “send_message_to_thing” as explained in
subsection 8.1.4. Once the thing gets response it updates the state after executing the action
and sends it to the Orchestrator (that was waiting about it). At this point, the Orchestrator
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can send a message to the target that the action is done, since the target is also defined as
a thing it can do this through API call “send_message_to_thing” as explained in subsection
8.1.4.

i t e r a t i o n = 0
target_s imulator = TargetSimulator ( t a r g e t )
system_state = [ s e r v i c e . i n i t i a l _ s t a t e f o r s e r v i c e in s e r v i c e s ]

whi l e True :
# wait ing f o r t a r g e t ac t i on
p r in t ( " Waiting f o r messages from ta rg e t . . . " )
target_message = await websocket . recv ( )
target_message_json = json . l oads ( target_message )
ta rget_act ion = target_message_json [ " va lue " ]
cur rent_target_state = target_s imulator . cur rent_state
target_s imulator . update_state ( target_act ion )
p r i n t ( f " I t e r a t i o n : { i t e r a t i o n } , t a r g e t ac t i on : { target_act ion } " )
current_state = ( tup l e ( system_state ) ,

current_target_state , ta rge t_act ion )

o r che s t ra to r_cho i c e =
or che s t r a t o r_po l i cy . get_act ion_for_state ( cur rent_state )

i f o r che s t ra to r_cho i c e == " undef ined " :
p r i n t ( f " Execution f a i l e d : no s e r v i c e can execute

{ target_act ion } in system s t a t e { system_state } " )
break

# send_act ion_to_service
se rv i ce_index = orche s t ra to r_cho i c e
chosen_thing_id = se rv i c e_ id s [ s e rv i ce_index ]
p r i n t ( " Sending message to th ing : " , chosen_thing_id ,

target_act ion , t imeout )
re sponse = api . send_message_to_thing ( chosen_thing_id ,

target_act ion , {} , t imeout )
p r i n t ( f "Got re sponse " )
p r i n t ( " Waiting f o r update from websocket . . . " )
message_rece ive = await websocket . recv ( )
p r i n t ( f " Update a f t e r change : {message_rece ive } " )
json_message = j son . l oads ( message_rece ive )
next_serv ice_state = json_message [ " va lue " ]
# compute the next system s t a t e
system_state [ s e rv i ce_index ] = next_serv ice_state

# send "DONE" to t a r g e t
re sponse = api . send_message_to_thing ( target_thing_id ,

" done " , {} , t imeout )
i t e r a t i o n += 1

i f __name__ == "__main__" :
arguments = par s e r . parse_args ( )
r e s u l t = async io . get_event_loop ( ) . run_until_complete (main

( arguments . con f i g , arguments . t imeout ) )
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9.3 Launch Devices
This script launch the devices (all services and the target), every device is launched in a dedi-
cated process. We can do this thanks to the standard Python library “multiprocessing”.
DEVICES = [

" p r ov i s i on i ng_s e rv i c e " ,
" d ry ing_serv i ce " ,
" ename l l ing_serv i c e " ,
" moulding_service " ,
" f i r s t_bak ing_se rv i c e " ,
" pa in t ing_se rv i c e " ,
" painting_by_human_service " ,
" second_baking_service " ,
" sh ipp ing_se rv i c e " ,

]

TARGET = " ta r g e t "

i f __name__ == "__main__" :
pool = mu l t i p ro c e s s i ng . Pool ( l en (DEVICES) + 1)

run_device_conf ig = p a r t i a l ( run_device , path_to_json=
CURRENT_DIRECTORY / " . . " / " c on f i g . j son " )

t a r g e t_r e su l t = pool . apply_async ( run_device_config , args=[TARGET] ,
kwds=d i c t ( i s_ta rge t=True ) )

r e s u l t s = pool .map( run_device_config , DEVICES)

try :
f o r r e s u l t in r e s u l t s :

r e s u l t . get ( )
t a r g e t_r e su l t . get ( )

except Exception :
p r i n t ( " In t e r rupted . " )
pool . terminate ( )

9.4 Execution
According to what was said regarding the communication in chapter 8 and regarding the code
in previous section 9.2 and 9.3, we start the software launching the main as Figure 9.11 shows.
The orchestrator:

• opens the WebSocket endpoint;
• collects problem data;
• sends events to Bosch Iot Things platform;
• listens to events originating;
• receives the “ACK” from Bosch Iot Things platform;
• waits for the messages from target.

Once launching the main that waits from the target action, we can launch the devices that
connect to Bosch Iot Hub through MQTT client, as Figure 9.12 shows:
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Figure 9.11. Starting software

Figure 9.12. Launching Devices

It is provided the target’s update state (for verifying in which state is currently the target) and
chosen the command by a hypothetical user (here the choice is simulated).
At this point the communication between the components begins as Figure 9.13 and Figure 9.14
show.

Figure 9.13. Devices flow

• the Orchestrator receives the action from target’s device;
• the Orchestrator sends the message to the thing that can perform the action;
• the Thing get the message and it updates the state in which it is after executing the

action;
• the Orchestrator gets the state updating;

item the Orchestrator send that the action is done to the target;
• it is released the next action from the target and everything starts again as before.
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Figure 9.14. Target-Orchestrator flow
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Chapter 10

Conclusion and Future Works

This chapter summarizes the thesis and offers conclusions and the future directions of research.
The chapter is structured as follows:

• In Section 10.1: we present an ovierview of the most important concepts addressed in
the thesis;

• In Section 10.2: we define the most important remarks of the framework;
• In Section 10.2: we list all the future works that can be done with this project.

10.1 Overview
This work underline the importance of Digital Twins as enabling technology in Industry 4.0.
The use of Digital Twins allows a connection with AI techniques such as planning over Markov
Decision Processes. In particular, we have seen that we have been able to model devices as
stochastic non-deterministic services with the possibility of failure. In this way when a machine
is wearing out we can understand it from the high probability of ending up in a broken state.
If a machine breaks, it can be repaired and become available again but all this has a high cost,
which will be represented by negative rewards.
Also the target have been modelled as a stochastic non-deterministic services and represents the
choice of the user. Obviously, in an Industry 4.0 scenario the target process of production will
be linear and one action at the time can be done. Through techniques based on probabilistic
reasoning and MDP it is possible to build an optimal orchestrator with respect to the optimal
policy. This orchestrator guarantees that: if a policy exists it will be found and it is optimal
compared to costs; if the composition does not exist in every case it will try to maximize
rewards. The orchestrator in a certain sense defines the strategy to be adopted and for each
action coming from the target dispatches it to the right service that can perform it.
Everything that we have identified has been implemented in a proof-of-concept that has allowed
us to verify how these systems work in practice. For this purpose we have also presented a simple
case study which, even if simple, is directly linked to real problems in Industry 4.0.

10.2 Remarks
The manufacturing process itself, the involved devices, and how they interact, is designed till
now by human experts in a traditional way. In the thesis we envision an architecture where
humans can instead specify a goal and take advantage of technologies such as digital twins to
automatically compose the corresponding physical processes, sharing some analogies with the
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notion of Web service composition. The technologies used in the thesis for doing this are very
innovative, in particular the use of Digital Twins has crucial importance on the Industry 4.0
world. The implementation of the project is done in Python language, while the implementation
of Digital Twins is made through Bosch IoT platform in JSON description language. What is
interesting to see is how the orchestrator implemented in Python communicates with Bosch IoT
Things and vice versa.
Althought the framework is implemented in a “normal” computer machine, it adheres perfectly
in an Industry 4.0 prototype and can be executing in an Digital Twins industrial context. This
solution is very powerful because permits to have non-deterministic stochastic available services
and also in the use of the target. Another important aspect is having a feedback from the
services when an action is performed correctly, this feedback doesn’t arrive to the target in fact
the target doesn’t know who execute its action. This is at the base of smart manufacturing,
because creates a decoupling between the user that use the target and how it is actually realized.

10.3 Future works
There are many future directions that can be taken, due to the novelty of the work. Some of
them are:

• it could be interesting to put the framework developed in a real industry. Our thesis give an
important contribution to this because it can already still runs on a computer/cloud that
is in charge of orchestrating; but it is also interesting that this orchestration takes place
in a specific environment for DTs and in fact in the literature this type of environment is
being studied;

• Handling exceptions: our current model does not explicitly capture a critical aspect of
many real-world scenarios, exception handling: if the target/composite service terminates
before a terminal state has been reached, work done so far has to be undone. This work is
distributed across different services. For example, if while booking a vacation, we book a
flight but cannot book a hotel, we must cancel the flight reservation, which can be costly.
If we also booked a car by now, the cost would be higher. We can augment the MDP
defined earlier to take these costs into account by adding a negative reward to states
(sz, st, a) and service choice i such that i cannot supply action a in its current state. The
size of the reward can depend on the states of the various services, as reflected in sz, which
reflects the work that needs to be undone in each of the existing services;

• Separate rewards specifications: in the setting considered here, we have coupled the re-
wards with the likelihood of the client making certain action requests into the target
service to be realized. In fact it may be convenient to keep the two specification sepa-
rated, and use the target service only to specify the likelihood of action request, in line
with what happens in the deterministic case. Rewards in this case could be expressed
dynamically on the history of actions executed so far by the target, through a transducer.
More precisely a transducer R = (Σ,∆, S, s0, f, g) is a deterministic transition system
with inputs and outputs, where Σ is the input alphabet, ∆ is the output alphabet, S is
the set of states, s0 the initial state, f : S×Σ→ S is the transition function (which takes
a state and an input symbol and returns the successor state) and g : S × Σ → ∆ is the
output function (which returns the output of the transition).
In our case the input alphabet would be the set of actions A, the output alphabet the
possible rewards expressed as reals R. In this way the output function g : S × A → R,
would correspond the reward function. The point is that now the rewards do not depend
on the state of the target, but on the sequence of actions executed so far. Interestingly
if we take the synchronous product of the target T (without rewards, but with stochastic
transitions) and of R (which is deterministic but outputs rewards), we get a target of
the form specified in Section 5.3 though this time computed from the two separated
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specifications, and we can apply the MDP construction presented here (or its extension
with stochastic available services discussed previously).

• In line with the above point, it has long been observed that many performance criteria
call for more sophisticated reward functions that do not depend on the last state only. For
example, in Robotics, we may want to reward a robot for picking up a cup only if it was
requested to do so earlier, where the pick-up command may have been given a number of
steps earlier. Similarly, we may want to reward an agent for behavior that is conditional
on some past fact – for example, if the person was identified as a child earlier, we must
provide her with food rich in protein, and if he is older, in food low in sodium.
All these proposal share the idea of specifying rewards on (partial traces or histories)
through some variant of linear-time temporal logic over finite traces LTLf . The research
on variants of LTLf has become very lively lately with promising results. A key point is
that formulas in these logics can be “translated” into standard deterministic finite state
automata DFAs that recognize exactly the traces that fulfill the formula. Such DFAs can
be combined with probabilistic transition systems to generate suitable MDPs to be used
for generating optimal solutions. This can be done also in our context. Essentially we
replace (or enhance) the target specification with a declarative set of logical constraints.
Then we compute the synchronous product with a target transition system that us the
likelihood of action choice, hence getting a target specification as that of Section 5.3,
analogously to the case of the transducer above. This can be solved by the techniques
presented earlier.

• Learning: although we focus on this thesis on model specification and model-based solution
techniques, we point out that for Web services and Industry 4.0, statistics gathering is
very simple, and in fact, is carried out routinely nowadays. Consequently, it is not difficult
to learn the stochastic transition function of existing services online, and use it to specify
the probabilistic elements of the model

• Safety: next to the target we can put safety specifications, so that if the system, wherever
it evolves, cannot go into dangerous states and it cannot happen that it is guided in a
direction that is not correct.

• Resilience: in the techniques described in this thesis, the system is usually assumed to
work in normal conditions. However, it is also important the that the systems work in
limit condition. If the system is operating and something strange happens, in any case
it "holds", i.e. it resists at these perturbations that bring it to the limit. In our case we
have resilience when for example a machine ends up in a broken state, then in a more or
less short time is repaired. We can improve this aspect, instead of turn-off if the system
is not optimal, it goes to the next element that makes it better than the previous one.
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